Nav: Home

Milestone: First electrons accelerated in European XFEL

December 21, 2015

A crucial component of the European X-ray laser European XFEL has taken up operation: The so-called injector, the 45-metre long first part of the superconducting particle accelerator, has accelerated its first electrons to nearly the speed of light. This is the first beam ever accelerated at the European XFEL and represents a major advancement toward the completion of the facility.

The X-ray laser European XFEL is an international research facility in northern Germany that will produce ultrabright X-ray laser flashes for unprecedented studies of the nanocosmos. It consists of a 2-kilometre long superconducting linear electron accelerator, followed by a series of highly precise magnets to produce the highly brilliant X-ray laser light.

The injector, which is located on the DESY campus in Hamburg and has been under construction since 2013, produced a series of tightly packed sets of electrons, or bunches, that passed through the 45-metre long injector beamline. The electrons made the full trip from start to end of the injector in 0.15 microseconds, achieving near light speed.

The injector shapes the highly charged electron bunches and gives them their initial energy, which is gradually increased across a 2-kilometre long linear accelerator that is still being assembled. Once energized, the electrons will be ready to generate the facility's X-ray flashes, enabling scientists to perform studies that are expected to have large impacts on medicine, energy production and storage, materials research, and many other fields.

DESY, which is European XFEL's main shareholder and close partner, is responsible for the construction and operation of the electron injector as well as the rest of the linear accelerator. Components for the injector were produced across Europe by the 17-institute European XFEL Accelerator Consortium, which is led by DESY. This includes work done by DESY as well as in-kind contributions from institutes in France, Italy, Poland, Russia, Spain, Sweden, and Switzerland.

"All members of the European XFEL Accelerator Consortium contributed to the injector, and we appreciate their professionalism during design, construction, and installation," says DESY leading scientist Dr. Hans Weise, who is coordinator for the Accelerator Consortium. "Their contributions now allow us to prepare the high-quality electron beam required for operation of the free-electron laser."

The design of the injector is strongly based on the one found in DESY's X-ray free-electron laser FLASH, the prototype facility for the European XFEL that began operation as a user facility in 2005. Several billion electrons are released from an electrode of caesium telluride when it is struck by an intense ultraviolet laser flash. The electrons form a bunch which is accelerated by radio frequency and kept together by intense magnetic fields. The bunch is accelerated, first through a normal conducting cavity made of copper, then through a pair of superconducting accelerator cryomodules. The two latter devices are chilled to -271°C by liquid helium to allow for highly efficient beam acceleration. These modules give the full electron beam the required characteristics needed for producing the X-ray flashes that will be used for researching matter at the atomic scale.

The injector will continue to go through rigorous testing while the rest of the linear accelerator is installed. The next major milestone will be accelerating electrons the for the full accelerator length to the European XFEL's Osdorfer Born site approximately 2.1 km away from the start of the injector. This is expected in late 2016, with user operation to follow in 2017.

"The first electrons in the injector mark a major milestone for this ambitious discovery machine - my congratulations go to the physicists and engineers who have constructed and installed the components with great dedication," says Prof. Helmut Dosch, chairman of the DESY Board of Directors. "And with more than half of the superconducting modules of the main accelerator tested and installed, I am sure that the start of the commissioning of the European XFEL accelerator will follow soon."

"I am glad to see the efforts with constructing the injector come to a successful completion, as we continue our focus on finishing the rest of the accelerator so we can provide researchers with the world's brightest X-ray light," says Prof. Massimo Altarelli, managing director of European XFEL. "I want to thank everyone involved in the construction and start-up of this starting point for our facility."
-end-
About European XFEL

The European XFEL, currently under construction in the Hamburg area, will be an international research facility of superlatives: 27 000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional "photos" of the nanoworld, "film" chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organizations worldwide. By the time the facility starts user operation in 2017, the company will have a workforce of about 280 employees. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland.

About DESY

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Deutsches Elektronen-Synchrotron DESY

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...