Nav: Home

PPPL physicists win Torkil Jensen award

December 21, 2015

Physicists Luis Delgado-Aparicio and Egemen Kolemen of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won a national scientific competition to conduct a full day of experiments on the DIII-D National Fusion Facility that General Atomics operates in San Diego for the DOE. The honor, known as the Torkil Jensen Award, is named after the late and internationally recognized scientist who was a member of the General Atomics Fusion Group for 44 years.

The PPPL physicists will use their opportunity to test the recently proposed cause of the density limit, a daunting problem that keeps doughnut-shaped facilities called tokamaks from operating at peak efficiency. The cause, according to a theory advanced by PPPL physicist David Gates and colleagues at the Laboratory, lies in the tendency of bubble-like islands that form in the plasma that fuels fusion reactions to shed heat and grow exponentially -- a runaway growth that disrupts the crucial current that completes the magnetic field that holds the plasma together.

"We want to understand the physics of this island growth and see if it causes the density limit," said Delgado-Aparicio. "We want to be able to tell a really coherent story." This work is supported by the DOE Office of Science.

The theory holds that impurities kicked up from the interior walls of a tokamak collect inside the islands and cause them to radiate away their heat. Raising the density of the plasma increases the heat loss. Countering this cooling is heat that researchers pump into the plasma. But when the thermal balance in the islands shifts to net cooling, the islands rapidly expand and the plasma falls apart.

Testing in a number of ways

The researchers will test this hypothesis in a number of ways. Kolemen will inject heat directly into an island to see if that offsets the cooling effect and causes the island to shrink rather than grow. The experiments will also add pellets of fuel to the core of the plasma to see if the direct heating can allow the density to increase without incident. And neon and argon impurities will be inserted into the islands to investigate whether the direct heating can overcome the radiated cooling effect. "What we are after is a microscopic description of what limits the density," said Kolemen. "And if we are right the next step will be to try to eliminate the problem."

The experiments, to be conducted in the first quarter of 2016, are in keeping with the spirit of the Torkil Jensen Award, which allots DIII-D time for research with the "potential for transformational results." DIII-D is the nation's largest magnetic fusion program, and the facility draws more than 500 researchers and institutions from around the world each year.

Experiments that lead to an understanding of the density limit, a vexing puzzle for more than 50 years, could facilitate the development of fusion as a safe, clean, and virtually limitless source of energy for generating electricity.
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Princeton Plasma Physics Laboratory

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...