Nav: Home

Biochemical clues may predict who develops Alzheimer's disease -- and who doesn't

December 21, 2015

Philadelphia, PA, December 21, 2015 - Investigators have wondered why the brains of some cognitively-intact elderly individuals have abundant pathology on autopsy or significant amyloid deposition on neuroimaging that are characteristic of Alzheimer disease (AD). Researchers reporting in The American Journal of Pathology investigated biochemical factors and identified differences in proteins from parietal cortex synapses between patients with and those without manifestation of dementia. Specifically, early-stage AD patients had elevated concentrations of synaptic soluble amyloid-β (Aβ) oligomers compared to controls who were not demented but displayed signs of AD pathology. Synapse-associated hyperphosphorylated tau (p-tau) levels did not increase until late-stage AD.

"Our results suggest that effective therapies will need to target synaptic Aβ oligomers, and that anti-amyloid therapies will be much less effective once synaptic p-tau pathology has developed, thus providing a potential explanation for the failure of amyloid-based trials," explained lead investigator Karen H. Gylys, PhD, of the UCLA School of Nursing and the Mary S. Easton Center for Alzheimer's Research at UCLA.

The investigators analyzed brain autopsy samples from different regions in the brain (parietal, superior parietal, entorhinal cortex, and hippocampus) from 46 patients who were classified into groups based on clinical and pathologic criteria: four cognitively-normal elderly controls, two patients with spinocerebellar ataxia type II, 15 patients with no clinical history of dementia but with histopathological signs of AD-related pathology (high-pathology controls), and 24 patients who were clinically demented and histopathologically diagnosed with AD. Patients with early-stage AD were distinguished from those in later stages. Flow cytometry analysis of synaptosomes (resealed nerve terminals) was used to measure the concentrations of two of the biochemical hallmarks of AD, Aβ and p-tau, in synaptic terminals.

Investigators examined whether synaptic Aβ levels were associated with neuritic plaque levels in the parietal cortex. They found little or no evidence of Aβ immunolabeling in either of the control groups but observed a rise in synaptic Aβ concentration associated with increasing neuropathologic disease stages. Synaptic Aβ levels highly correlated with the occurrence of plaque.

Next researchers investigated how Aβ levels are related to clinical dementia. They measured synapse-associated soluble oligomers, known as oAβ in the parietal cortex, levels of which did not correlate with Aβ plaque counts. However, levels of synaptic oAβ in early-stage AD, but not late-stage AD, were significantly elevated relative to both the neuropathologically normal and high pathology groups. "The sharp oAβ elevation in early AD cases suggests that the clinical syndrome of AD dementia may emerge once the level of synapse-associated soluble oligomers exceeds a certain threshold," noted Dr. Gylys.

Investigators studied the timing of the biochemical changes, noting that other investigators have found evidence that the soluble oligomers of Aβ are the primary toxic peptides that initiate downstream tau pathology as part of the "amyloid cascade hypothesis" of AD. They reported synaptic accumulation of Aβ in the earliest plaque stages, prior to the appearance of synaptic p-tau, which was generally absent until late-stage AD. Aβ and tau levels correlated better in samples from the hippocampus and entorhinal cortex, regions of the brain that are affected earlier in AD than the parietal cortex.

In future work, the authors aim to clarify the precise mechanisms by which soluble Aβ oligomers affect tau and lead to synaptic dysfunction in AD. An intriguing question is whether therapies that slow Aβ oligomer accumulation might delay or even prevent the onset of AD-related dementia. "The correspondence between our human and animal data suggests that this and related animal models will be useful for understanding the progress of synaptic pathology and developing therapies to protect synaptic terminals," commented Dr. Gylys.
-end-
Other investigators involved in the study were Tina Bilousova, Carol A. Miller, Wayne W. Poon, Harry V. Vinters, Maria Corrada, Claudia Kawas, Eric Y. Hayden, David B. Teplow, Charles Glabe, Ricardo Albay III, Gregory M. Cole, and Edmond Teng.

Elsevier Health Sciences

Related Dementia Articles:

Flies the key to studying the causes of dementia
A research team from the University of Plymouth, University of Southampton and the Alexander Fleming Biomedical Sciences Research Center, Vari, Greece, have studied two structurally-similar proteins in the adult brain and have found that they play distinct roles in the development of dementia.
Stroke prevention may also reduce dementia
Ontario's stroke prevention strategy appears to have had an unexpected, beneficial side effect: a reduction also in the incidence of dementia among older seniors.
Dementia: The right to rehabilitation
Rehabilitation is important for people with dementia as it is for people with physical disabilities, according to a leading dementia expert.
One in 4 elderly Australian women have dementia
At least a quarter of Australian women over 70 will develop dementia according to University of Queensland researchers.
Rural dementia -- we need to talk
Research carried out by Plymouth University into the experience of dementia in farming and farming families, and its impact on their businesses and home lives, has identified four areas of concern which need to be addressed if dementia in the countryside is to be managed.
Women with dementia receive less medical attention
Women with dementia have fewer visits to the GP, receive less health monitoring and take more potentially harmful medication than men with dementia, new UCL research reveals.
Dementia on the downslide, especially among people with more education
In a hopeful sign for the health of the nation's brains, the percentage of American seniors with dementia is dropping, a new study finds.
New study suggests rethink of dementia causes
University of Adelaide researchers have developed a new theory for the causes of dementia and other neurodegenerative diseases, involving an out-of-control immune system.
Bleeding stroke associated with onset of dementia
Bleeding within the brain, or intracerebral hemorrhage, was associated with a high risk of developing dementia post stroke, according to research presented at the American Stroke Association's International Stroke Conference 2016.
Dementia: New insights into causes of loss of orientation
The University of Exeter Medical School led two studies, each of which moves us a step closer to understanding the onset of dementia, and potentially to paving the way for future therapies.

Related Dementia Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.