Nav: Home

Physics sheds light on stem cell-derived organoid growth and brain development

December 21, 2015

New research has shed light on the complex interactions of stem cell function and molecular diffusion in neural tissue, which may explain many phenomena from stem cell differentiation to the formation of the cortex of the brain. While researching new methods of reconstructing 3D neural tissue and neural pathways in the brain and spinal cord, Dr. Richard McMurtrey devised new mathematical approaches for understanding the concentration of nutrients within the 3D tissue constructs and how this could affect tissue growth.

Stem cells have very unique behaviors and responses to specific concentrations of many molecular factors, meaning that it is important to understand the complex dynamics of nutrient signaling, diffusion, and metabolism in 3D tissues. Many 3D tissues have been constructed with the hope of replicating "mini-organs" from a patient's own stem cells, including "mini-brains" or cerebral organoids that can be used to study neurological diseases or which may one day be directly transplanted into damaged tissues of a patient. The ability to guide and direct stem cell development and function to the desired effect in the organoids is therefore an essential aspect of this research.

"I first stumbled upon these ideas when trying to figure out how to obtain exact nutrient concentrations in some 3D tissues I had designed that were composed of neural stem cells," said Dr. McMurtrey. "The mathematics involved has always fascinated me, but I was surprised that answering my questions was a lot more difficult than I thought it would be. I felt like I kept going down a rabbit hole trying to find solutions, and eventually I figured out the mathematics that could answer my questions. I think these ideas really help us understand the role of diffusion in brain function and neural development better than ever before. But of course there is also much more to still learn."

During human development, stem cells near the center of the developing brain will migrate outwardly and form the neurons in the cortex on the outer rim of the brain, the region where thoughts are formed and processed. The mathematical work described in the paper describes growth limitations imposed by diffusion and metabolism and also suggests an underlying physical basis for the phenomenon of neural migration to a dense external cortical layer. Once the neurons are programmed to migrate to the outer surface, the cortex can then become more convoluted or wrinkled to create more extensive neural networks.

One of the unique aspects of these physical models involved implementing features of cell metabolism in the equations, and the work enables any researcher to adapt the models to their specific cell types as well as to their specific tissue shape and architecture. Even though the mathematics involved in deriving these equations is complex, one of the advantages of these models is that researchers only need to have a working knowledge of algebra to use them. The modeling of many physical phenomena generally requires specialized skills in computational programming, but this work sought to provide what are called analytic or explicit solutions, which simply allow the parameters to be inserted into the formulas and the solutions to be determined.

Dr. McMurtrey's research currently focuses on reconstructing brain and spinal cord structures and pathways using synthetic 3-dimensional neural tissue made with stem cells, biomaterials, and nanotechnology, and he hopes to use the models to design enhanced artificial tissue implants that could be used clinically to repair sites of tissue damage. These engineered tissue constructs can also be used for studying models of development and disease under controlled conditions or for conditioning cells to enhance survival after implantation into the body. "Many physicists and mathematicians have studied medicine, like Fick or Helmholtz, or wondered in awe at the complex function of the brain, like Einstein or Feynman," Dr. McMurtrey stated. "I wanted to be a physicist growing up, but I happened to end up in medicine, though I still marvel at the underlying physics that can both govern a vast universe and yet also make all neural function possible. I think we will see that, just as with all other systems in the universe, we cannot fully understand a system as complex as the brain until we understand the mathematics governing many fundamental components of that system, whether that is the complexity of neural networks, the dynamics of cell signaling and gene expression networks, the Hodgkin-Huxley-like electrical activity of neuronal membranes, or the biomechanics of developing tissues. Ultimately I believe that physics and engineering have a lot to contribute to solving problems in the human body that the medical field as of yet cannot solve."
-end-
Reference:

McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Engineering. doi: 10.1089/ten.TEC.2015.0375

Institute of Neural Regeneration & Tissue Engineering

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab