Nav: Home

Physics sheds light on stem cell-derived organoid growth and brain development

December 21, 2015

New research has shed light on the complex interactions of stem cell function and molecular diffusion in neural tissue, which may explain many phenomena from stem cell differentiation to the formation of the cortex of the brain. While researching new methods of reconstructing 3D neural tissue and neural pathways in the brain and spinal cord, Dr. Richard McMurtrey devised new mathematical approaches for understanding the concentration of nutrients within the 3D tissue constructs and how this could affect tissue growth.

Stem cells have very unique behaviors and responses to specific concentrations of many molecular factors, meaning that it is important to understand the complex dynamics of nutrient signaling, diffusion, and metabolism in 3D tissues. Many 3D tissues have been constructed with the hope of replicating "mini-organs" from a patient's own stem cells, including "mini-brains" or cerebral organoids that can be used to study neurological diseases or which may one day be directly transplanted into damaged tissues of a patient. The ability to guide and direct stem cell development and function to the desired effect in the organoids is therefore an essential aspect of this research.

"I first stumbled upon these ideas when trying to figure out how to obtain exact nutrient concentrations in some 3D tissues I had designed that were composed of neural stem cells," said Dr. McMurtrey. "The mathematics involved has always fascinated me, but I was surprised that answering my questions was a lot more difficult than I thought it would be. I felt like I kept going down a rabbit hole trying to find solutions, and eventually I figured out the mathematics that could answer my questions. I think these ideas really help us understand the role of diffusion in brain function and neural development better than ever before. But of course there is also much more to still learn."

During human development, stem cells near the center of the developing brain will migrate outwardly and form the neurons in the cortex on the outer rim of the brain, the region where thoughts are formed and processed. The mathematical work described in the paper describes growth limitations imposed by diffusion and metabolism and also suggests an underlying physical basis for the phenomenon of neural migration to a dense external cortical layer. Once the neurons are programmed to migrate to the outer surface, the cortex can then become more convoluted or wrinkled to create more extensive neural networks.

One of the unique aspects of these physical models involved implementing features of cell metabolism in the equations, and the work enables any researcher to adapt the models to their specific cell types as well as to their specific tissue shape and architecture. Even though the mathematics involved in deriving these equations is complex, one of the advantages of these models is that researchers only need to have a working knowledge of algebra to use them. The modeling of many physical phenomena generally requires specialized skills in computational programming, but this work sought to provide what are called analytic or explicit solutions, which simply allow the parameters to be inserted into the formulas and the solutions to be determined.

Dr. McMurtrey's research currently focuses on reconstructing brain and spinal cord structures and pathways using synthetic 3-dimensional neural tissue made with stem cells, biomaterials, and nanotechnology, and he hopes to use the models to design enhanced artificial tissue implants that could be used clinically to repair sites of tissue damage. These engineered tissue constructs can also be used for studying models of development and disease under controlled conditions or for conditioning cells to enhance survival after implantation into the body. "Many physicists and mathematicians have studied medicine, like Fick or Helmholtz, or wondered in awe at the complex function of the brain, like Einstein or Feynman," Dr. McMurtrey stated. "I wanted to be a physicist growing up, but I happened to end up in medicine, though I still marvel at the underlying physics that can both govern a vast universe and yet also make all neural function possible. I think we will see that, just as with all other systems in the universe, we cannot fully understand a system as complex as the brain until we understand the mathematics governing many fundamental components of that system, whether that is the complexity of neural networks, the dynamics of cell signaling and gene expression networks, the Hodgkin-Huxley-like electrical activity of neuronal membranes, or the biomechanics of developing tissues. Ultimately I believe that physics and engineering have a lot to contribute to solving problems in the human body that the medical field as of yet cannot solve."

McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Engineering. doi: 10.1089/ten.TEC.2015.0375

Institute of Neural Regeneration & Tissue Engineering

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...