Nav: Home

Vitamin A quells severity of preemie GI disease in mice

December 21, 2015

After observing that some gastrointestinal disease in premature human and mouse infants progresses only when certain immune system white blood cells go into inflammatory overdrive, Johns Hopkins researchers have found that giving large doses of vitamin A to mice converts those blood cells into inflammation suppressors and reduces the severity of the disease, compared to untreated mice.

The findings, which add to evidence of vitamin A's anti-inflammatory properties, are published online Dec. 21 in the Journal of Clinical Investigation.

An estimated 5 to 10 percent of premature babies develop a severe form of bowel disease called necrotizing enterocolitis, an inflammatory condition marked by the death of intestinal tissue and lifelong digestive, lung and other impairments, if they survive. One in four infants who get the disease will die from it.

"It's amazing and maybe a little humbling to think that a naturally occurring vitamin might put out the fire of such a devastating disease," says David Hackam, M.D., Ph.D., surgeon-in-chief at the Johns Hopkins Children's Center and professor of surgery at the Johns Hopkins University School of Medicine. "It's a nasty disease for which there isn't reliable treatment, and certainly no specific cure."

Hackam cautions that the safety of high doses of vitamin A in children is not yet established and that additional studies must be performed before such therapy would be available to infants. That could take several years, he says.

For the study, Hackam and his team first analyzed the types of white blood cells in the intestines of human infants and newborn mice with the rodent form of the disease, focusing on the large number of of T cells they found there.

Using newborn mice genetically engineered to lack T cells, they introduced gut bacteria from mice with the disease and established that mice without T cells failed to develop the condition. But when T cells taken from diseased mice were given to newborn mice without T cells, the same genetically engineered mice acquired the disease.

Of the T cells analyzed from diseased intestines, they found the majority consisted of inflammatory T cells -- of the type CD4+ Th17 -- and few inflammation suppressor cells, known as Tregs. In an unrelated study from the La Jolla Institute for Allergy and Immunology, investigators showed that retinoic acid, a compound derived from vitamin A, reduced the level of inflammatory T cells and increased the level of inflammation suppressor T cells.

The researchers used this knowledge to test whether changing the balance of the T cells would reduce the severity of the disease in mice with necrotizing enterocolitis. They fed the mice 50 micrograms of vitamin A daily for four days, considered a fairly low dose. When they looked at the intestines of the diseased mice fed vitamin A, they looked more like healthy intestines than diseased ones.

Hackam says further experiments revealed that cells in the intestinal lining contain a bacteria-sensing receptor on their surface responsible for attracting swarms of inflammatory T cells to the intestines; intestinal cells without the receptor -- called toll-like receptor 4, or TLR4 -- failed to draw in the inflammatory T cells.

To learn if the inflammatory T cells caused physical damage to the intestinal cells, the researchers added a protein released by the inflammatory T cells to laboratory-grown mouse intestinal tissue and to the intestinal tissue of disease-free newborn mice. Intestinal cells with the T cell protein died more often and produced fewer new intestine cells than healthy cells both in the lab-grown cultures and in the newborn mice.

"This interaction between the T cells and the intestine seems to feed the fire in developing the disease," says Hackam.
Other authors on the study include Chhinder Sodhi, Hongpeng Jia, Yukihiro Yamaguchi, Peng Lu, William Fulton, Diego Nino and Thomas Prindle Jr. of Johns Hopkins Medicine; and Misty Good, Joyce Lin, Congrong Ma, Maria Branca, Samantha Weyandt and John Ozolek of the Children's Hospital of Pittsburgh.

The study was funded by the National Institute of General Medical Sciences (R01GM078238) and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK083752).

Johns Hopkins Medicine

Related Infants Articles:

Probiotic may help treat colic in infants
Probiotics -- or 'good bacteria' -- have been used to treat infant colic with varying success.
Deaf infants' gaze behavior more advanced than that of hearing infants
Deaf infants who have been exposed to American Sign Language are better at following an adult's gaze than their hearing peers, supporting the idea that social-cognitive development is sensitive to different kinds of life experiences.
Initiating breastfeeding in vulnerable infants
The benefits of breastfeeding for both mother and child are well-recognized, including for late preterm infants (LPI).
Young infants with fever may be more likely to develop infections
Infants with a high fever may be at increased risk for infections, according to research from Penn State College of Medicine.
Early term infants less likely to breastfeed
A new, prospective study provides evidence that 'early term' infants (those born at 37-38 weeks) are less likely than full-term infants to be breastfeed within the first hour and at one month after birth.
Infants are more likely to learn when with a peer
Researchers at the University of Connecticut and University of Washington looked at the mechanisms involved in language learning among nine-month-olds, the youngest population known to be studied in relation to on-screen learning.
Allergic reactions to foods are milder in infants
Majority of infants with food-induced anaphylaxis present with hives and vomiting, suggesting there is less concern for life-threatening response to early food introduction.
Non-dairy drinks can be dangerous for infants
A brief report published in Acta Paediatrica points to the dangers of replacing breast milk or infant formula with a non-dairy drink before one year of age.
Infants can't talk, but they know how to reason
A new study reveals that preverbal infants are able to make rational deductions, showing surprise when an outcome does not occur as expected.
Infants are able to learn abstract rules visually
Three-month-old babies cannot sit up or roll over, yet they are already capable of learning patterns from simply looking at the world around them, according to a recent Northwestern University study published in PLOS One.
More Infants News and Infants Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab