Researchers identify mutations causing butterfly-shaped eye pigment dystrophy

December 21, 2015

Bar Harbor, Maine - A butterfly-shaped pigment accumulation in the macula of the eye, which can lead to severe vision loss in some patients, is due to mutations in the alpha-catenin 1 gene (CTNNA1), an international research consortium including a team from The Jackson Laboratory reports in Nature Genetics.

The findings may have relevance to understanding macular degenerative diseases.

CTNNA1 encodes the protein CTNNA1, an alpha-catenin, which is part of the cellular machinery that glues cells to one another. Among CTNNA1's roles is building and maintaining the retinal pigment epithelium (RPE). This pigmented cell layer is critical for nourishing retinal visual cells and is sandwiched firmly between the neurosensory retina and the choroid, a capillary-rich tissue at the back of the eye.

The research team led by Anneke I. den Hollander, Ph.D., a professor at Radboud University Medical Center in Nijmegen, The Netherlands, identified CTNNA1 mutations in three families in which the butterfly-shaped pigment dystrophy of the eye is common. While relatively benign, this condition in some cases leads to severely impaired vision.

Independently, Professor Patsy Nishina's laboratory at The Jackson Laboratory discovered a mouse strain with an analogous mutation in the same gene as identified by den Hollander's team. Their collaboration revealed that the mouse model exhibits the same symptoms as the human patients, including pigmentary abnormalities, focal thickening, elevated lesions, and decreased light-activated responses in the RPE.

The researchers theorize that, although CTNNA1 is expressed in both the retina and the RPE, the disease is caused by defects in the RPE. CTNNA1 is a central component of intercellular adherens junctions, which are critical for maintaining RPE integrity.

The finding that the CTNNA1 mutations are a cause of butterfly-shaped pigment dystrophy supports the hypothesis that defects in the cadherin-based intercellular adhesion system may contribute to macular degenerative diseases.

Nishina comments, "This research nicely demonstrates the 'virtuous loop' between findings in patient data and how a good mouse model equivalent can provide detailed insight into the mechanisms of a disease."

Other Jackson Laboratory researchers collaborating in the research were Mark P. Krebs, Wanda Hicks, Lanying Shi, Lucy Rowe, Gayle B. Collin and Jeremy R. Charette.

The Jackson Laboratory is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center. It employs 1,700 staff, and its mission is to discover precise genomic solutions for disease and empower the global biomedical community in the shared quest to improve human health.
-end-


Jackson Laboratory

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.