Nav: Home

New device uses carbon nanotubes to snag molecules

December 21, 2015

Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes.

The team modified a simple microfluidic channel with an array of vertically aligned carbon nanotubes -- rolled lattices of carbon atoms that resemble tiny tubes of chicken wire. The researchers had previously devised a method for standing carbon nanotubes on their ends, like trees in a forest. With this method, they created a three-dimensional array of permeable carbon nanotubes within a microfluidic device, through which fluid can flow.

Now, in a study published this week in the Journal of Microengineering and Nanotechnology, the researchers have given the nanotube array the ability to trap certain particles. To do this, the team coated the array, layer by layer, with polymers of alternating electric charge.

"You can think of each nanotube in the forest as being concentrically coated with different layers of polymer," says Brian Wardle, professor of aeronautics and astronautics at MIT. "If you drew it in cross-section, it would be like rings on a tree."

Depending on the number of layers deposited, the researchers can create thicker or thinner nanotubes and thereby tailor the porosity of the forest to capture larger or smaller particles of interest.

The nanotubes' polymer coating may also be chemically manipulated to bind specific bioparticles flowing through the forest. To test this idea, the researchers applied an established technique to treat the surface of the nanotubes with antibodies that bind to prostate specific antigen (PSA), a common experimental target. The polymer-coated arrays captured 40 percent more antigens, compared with arrays lacking the polymer coating.

Wardle says the combination of carbon nanotubes and multilayer coatings may help finely tune microfluidic devices to capture extremely small and rare particles, such as certain viruses and proteins.

"There are smaller bioparticles that contain very rich amounts of information that we don't currently have the ability to access in point-of-care [medical testing] devices like microfluidic chips," says Wardle, who is a co-author on the paper. "Carbon nanotube arrays could actually be a platform that could target that size of bioparticle."

The paper's lead author is Allison Yost, a former graduate student who is currently an engineer at Accion Systems. Others on the paper include graduate student Setareh Shahsavari; postdoc Roberta Polak; School of Engineering Professor of Teaching Innovation Gareth McKinley; professor of materials science and engineering Michael Rubner, and Raymond A. And Helen E. St. Laurent Professor of Chemical Engineering Robert Cohen.

A porous forest

Carbon nanotubes have been a subject of intense scientific study, as they possess exceptional electrical, mechanical, and optical properties. While their use in microfluidics has not been well explored, Wardle says carbon nanotubes are an ideal platform because their properties may be manipulated to attract certain nanometer-sized molecules. Additionally, carbon nanotubes are 99 percent porous, meaning a nanotube is about 1 percent carbon and 99 percent air.

"Which is what you need," Wardle says. "You need to flow quantities of fluid through this material to shed all the millions of particles you don't want to find and grab the one you do want to find."

What's more, Wardle says, a three-dimensional forest of carbon nanotubes would provide much more surface area on which target molecules may interact, compared with the two-dimensional surfaces in conventional microfluidics.

"The capture efficiency would scale with surface area," Wardle notes.

A versatile array

The team integrated a three-dimensional array of carbon nanotubes into a microfluidic device by using chemical vapor deposition and photolithography to grow and pattern carbon nanotubes onto silicon wafers. They then grouped the nanotubes into a cylinder-shaped forest, measuring about 50 micrometers tall and 1 millimeter wide, and centered the array within a 3 millimeter-wide, 7-millimeter long microfluidic channel.

The researchers coated the nanotubes in successive layers of alternately charged polymer solutions in order to create distinct, binding layers around each nanotube. To do so, they flowed each solution through the channel and found they were able to create a more uniform coating with a gap between the top of the nanotube forest and the roof of the channel. Such a gap allowed solutions to flow over, then down into the forest, coating each individual nanotube. In the absence of a gap, solutions simply flowed around the forest, coating only the outer nanotubes.

After coating the nanotube array in layers of polymer solution, the researchers demonstrated that the array could be primed to detect a given molecule, by treating it with antibodies that typically bind to prostate specific antigen (PSA). They pumped in a solution containing small amounts of PSA and found that the array captured the antigen effectively, throughout the forest, rather than just on the outer surface of a typical microfluidic element.

Wardle says that the nanotube array is extremely versatile, as the carbon nanotubes may be manipulated mechanically, electrically, and optically, while the polymer coatings may be chemically altered to capture a wide range of particles. He says an immediate target may be biomarkers called exosomes, which are less than 100 nanometers wide and can be important signals of a disease's progression.

"Science is really picking up on how much information these particles contain, and they're sort of everywhere, but really hard to find, even with large-scale equipment," Wardle says. "This type of device actually has all the characteristics and functionality that would allow you to go after bioparticles like exosomes and things that really truly are nanometer scale."
-end-
This research was funded, in part, by the National Science Foundation.

Additional background

ARCHIVE: Taking aircraft manufacturing out of the oven

ARCHIVE: Planes, trains, and automobiles: stronger, faster, lighter

ARCHIVE: Tiny 3D chips

Massachusetts Institute of Technology

Related Carbon Nanotubes Articles:

Carbon nanotubes self-assemble into tiny transistors
Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle.
Reusable carbon nanotubes could be the water filter of the future, says RIT study
Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials -- silicon gels and activated carbon -- according to a paper by RIT researchers John-David Rocha and Reginald Rogers.
How to roll a nanotube: Demystifying carbon nanotubes' structure control
A key advancement in the design of high performance carbon-based electronics.
Carbon nanotubes improve metal's longevity under radiation
Carbon nanotubes may improve longevity in nuclear reactors.
New process enables easier isolation of carbon nanotubes
Using this new method, long carbon nanotubes with high structural integrity, and without contaminants, can be obtained.
New device uses carbon nanotubes to snag molecules
Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes.
Future electronics based on carbon nanotubes
A big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors.
Can engineered carbon nanotubes help to avert our water crisis?
Carbon nanotube membranes have a bright future in addressing the world's growing need to purify water from the sea, researchers say in a study published in the journal Desalination.
Future flexible electronics based on carbon nanotubes
Researchers have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes, a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices.
Synthesis of structurally pure carbon nanotubes using molecular seeds
For the first time, researchers at Empa and the Max Planck Institute for Solid State Research have succeeded in 'growing' single-wall carbon nanotubes with a single predefined structure -- and hence with identical electronic properties.

Related Carbon Nanotubes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".