New technique to examine how the brain categorizes images

December 21, 2015

Despite the obvious difference between a chihuahua and a doberman, the human brain effortlessly categorises them both as dogs, a feat that is thus far beyond the abilities of artificial intelligence.

Previous research has established that the brain can recognise and categorise objects extremely rapidly, however the way this process occurs is still largely unknown. Researchers from Monash University have pioneered a new image modulation technique known as semantic wavelet-induced frequency-tagging (SWIFT) to further test how images are processed.

This work, by Associate Professor Naotsugu Tsuchiya and Dr Roger Koenig-Robert from the School of Psychological Sciences (affiliates of Australian Research Council Centre for Integrative Brain Functions), identifies a way to visually stimulate the brain to isolate neural activity responsible for categorising objects. This is not an easy task at all, because areas in the visual cortex supporting these category representations are simultaneously active with areas representing low-level visual features such as lines, forms and contrast.

Categorisation of objects is believed to emerge gradually, in a hierarchical manner. For example, simple visual features such as lines, contrast and colour are thought to be represented at early stages. For more complex representations, these features are combined, giving rise to abstract categorisation (such as cars, faces and animals), and neurons in high-level areas are believed to be responsible.

By isolating the areas representing abstract, object categories in the brain, the research has allowed greater understanding of how humans effortlessly categorise objects, despite massively different appearances.

Associate Professor Tsuchiya said the discovery could prove useful for manipulating images so that they communicate information in a subliminal, non-conscious manner.

"SWIFT can degrade arbitrary natural stimuli in a subtle manner. This technique may find its own application as a way to reveal and/or hide specific aspects of images. Potentially, SWIFT could be used to probe robustness and flexibility of artificial visual systems, such as those used in security," Associate Professor Tsuchiya said.

Using functional magnetic resonance imaging (fMRI), the study determined that in faces and scenes modulated with SWIFT, there was a sustained and constant brain response in early visual areas, and periodical responses in the higher level (category-selective) areas.

The cutting-edge research has been published in the prestigious PLOS ONE journal and can be viewed here.
-end-


Monash University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.