Nav: Home

Speeding up brain's waste disposal may slow down neurodegenerative diseases

December 21, 2015

A study of mice shows how proteasomes, a cell's waste disposal system, may break down during Alzheimer's disease (AD), creating a cycle in which increased levels of damaged proteins become toxic, clog proteasomes, and kill neurons. The study, published in Nature Medicine and supported by the National Institutes of Health, suggests that enhancing proteasome activity with drugs during the early stages of AD may prevent dementia and reduce damage to the brain.

"This exciting research advances our understanding of the role of the proteasomes in neurodegeneration and provides a potential way to alleviate symptoms of neurodegenerative disorders," said Roderick Corriveau, Ph.D., program director at the NIH's National Institute of Neurological Disorders and Stroke (NINDS), which provided funding for the study.

The proteasome is a hollow, cylindrical structure which chews up defective proteins into smaller, pieces that can be recycled into new proteins needed by a cell. To understand how neurodegenerative disorders affect proteasomes, Natura Myeku, Ph.D., a postdoctoral fellow working with Karen E. Duff, Ph.D., professor of pathology and cell biology at Columbia University, New York City, focused on tau, a structural protein that accumulates into clumps called tangles in the brain cells of patients with AD and several other neurodegenerative disorders known as tauopathies.

Using a genetically engineered mouse model of tauopathy, as well as looking at cells in a dish, the scientists discovered that as levels of abnormal tau increased, the proteasome activity slowed down.

Treating the mice at the early stages of tauopathy with the drug rolipram increased proteasome activity, decreased tau accumulations and prevented memory problems. They found that the drug worked exclusively during the early stages degeneration, which began around four months of age. It helped four-month old tauopathy mice remember the location of hidden swimming platforms as well as control mice, and better than tauopathy mice that received placebos. Treating mice at later stages of the disease was not effective.

"These results show, for the first time, that you can activate the proteasome in the brain using a drug and effectively slow down the disease, or prevent it from taking a hold," said Dr. Duff, senior author of the study.

Rolipram was initially developed as an antidepressant but is not used clinically due to its side effects. It increases the levels of cyclic AMP, a compound that triggers many reactions inside brain cells. Rolipram works by blocking cyclic AMP phosphodiesterase four (PDE4), an enzyme that degrades cyclic AMP. The scientists found that cyclic AMP levels are critical for controlling proteasome activity. Treating brain slices from tauopathy mice with rolipram, or a version of cyclic AMP that PDE4 cannot degrade, reduced the accumulation of tau and sped proteasome activity.

"We were hoping to show, using rolipram, that increasing cyclic AMP is a pharmaceutical strategy worth pursuing. The suggestion is not that rolipram should immediately go into the clinic but that drugs with mechanisms similar to rolipram should be investigated further," said Dr. Myeku.

Drs. Myeku and Duff plan to further investigate proteasome activity and the impact of tau and other disease-related proteins on this system for chewing up and clearing out damaged proteins. In addition, they want to search libraries of FDA-approved compounds or new molecules for drugs that work in a similar way to rolipram or activate proteasomes by different pathways.

"The proteasome system we are studying also degrades proteins associated with a number of other neurodegenerative diseases such as Parkinson's, Huntington's, frontotemporal degeneration and amyotrophic lateral sclerosis. We may be able to apply these findings to other disorders that accumulate proteins," said Dr. Duff.
-end-
This work was supported by the NINDS (NS074593) and the CurePSP Foundation.

References:

Myeku N et al. 'Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling,' Nature Medicine, Dec. 21, 2015.

NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH/National Institute of Neurological Disorders and Stroke

Related Neurodegenerative Diseases Articles:

Study suggests a protein could play key role in neurodegenerative diseases
Research led by Queen Mary University of London and the University of Seville around one protein's role in regulating brain inflammation could improve our understanding of neurodegenerative diseases.
Beyond finding a gene: Same repeated stretch of DNA in three neurodegenerative diseases
Four different rare diseases are all caused by the same short segment of DNA repeated too many times, a mutation researchers call noncoding expanded tandem repeats.
Protein complex may help prevent neurodegenerative diseases
The protein complex NAC in the cell helps to prevent the aggregration of proteins associated with several neurodegenerative diseases.
Experimental Biology highlights -- Cancer, neurodegenerative diseases and medical news
Embargoed press materials are now available for the Experimental Biology (EB) 2019 meeting, to be held in Orlando April 6-9.
Circadian clock plays unexpected role in neurodegenerative diseases
Northwestern University researchers induced jet lag in a fruit fly model of Huntington disease and found that jet lag protected the flies' neurons.
Neurodegenerative diseases identified using artificial intelligence
Researchers have developed an artificial intelligence platform to detect a range of neurodegenerative disease in human brain tissue samples, including Alzheimer's disease and chronic traumatic encephalopathy.
Open-science model for drug discovery expands to neurodegenerative diseases
Parkinson's disease and Amyotrophic Lateral Sclerosis are the newest frontiers for open science drug discovery, a global movement led by academic scientists in Toronto that puts knowledge sharing and medication affordability ahead of patents and profits.
New stage in the development of corrective mechanisms for ischemia and neurodegenerative diseases
In the last decade, there has been a growing body of experimental data confirming that neural networks are the minimal functional unit of the nervous system.
Scientists from TU Dresden search for new methods to cure neurodegenerative diseases
Behavioural experiments confirm: Additional neurons improve brain function.
Using graphene to detect ALS, other neurodegenerative diseases
Graphene can determine whether cerebrospinal fluid comes from a person with ALS, MS or from someone without a neurodegenerative disease.
More Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.