Twisted magnetic fields give new insights on star formation

December 21, 2015

Using new images that show unprecedented detail, scientists have found that material rotating around a very young protostar probably has dragged in and twisted magnetic fields from the larger area surrounding the star. The discovery, made with the National Science Foundation's Karl G. Jansky Very Large Array (VLA) radio telescope, has important implications for how dusty disks -- the raw material for planet formation -- grow around young stars.

The scientists studied a young protostar about 750 light-years from Earth in the constellation Perseus. Their observations, made in 2013 and 2014, measured the alignment, or polarization, of radio waves emitted by material, mostly dust, falling into a burgeoning disk orbiting the young star. The polarization information revealed the configuration of magnetic fields in this region near the star.

"The alignment of magnetic fields in this region near young stars is very important to the development of the disks that orbit them. Depending on its alignment, the magnetic field can either hinder the growth of the disk or help funnel material onto the disk, allowing it to grow," said Leslie Looney, of the University of Illinois at Urbana-Champaign.

As material from the envelope of dust and gas surrounding the young star falls inward toward the rotating disk, it is likely to drag magnetic field lines with it. Because of this, the structure of the magnetic field near the star will become different from the field's structure farther away.

"Our VLA observations are showing us this region, where the change in shape of the magnetic field is taking place," said Erin Cox, also of the University of Illinois Urbana-Champaign. The observations, she added, produced the first images at wavelengths of 8 and 10 millimeters to show the polarization near a protostar.

The observations also indicated that millimeter- to centimeter-sized particles are numerous in the disk surrounding the young star. Since the protostar is only about 10,000 years old -- very short in astronomical timescales -- this may mean that such grains form and grow quickly in the environment of a still-forming star.

The star, dubbed NGC1333 IRAS 4A, is one of two young stars forming within a common envelope of dust and gas. The disk around it contains material with a total mass more than twice that of our Sun.

Cox and Looney are part of an international team of astronomers studying the protostar. The scientists are reporting their results in the Astrophysical Journal Letters.
-end-
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.