Nav: Home

Peering under the hood into the workings of molecular motors

December 21, 2015

Understanding how tiny molecular motors called myosins use energy to fuel biological tasks like contracting muscles could lead to therapies for muscle diseases and cancers, says a team of researchers led by Penn State College of Medicine scientists.

Myosins are proteins that use high-energy adenosine triphosphate, or ATP, to accomplish mechanical work such as muscle contractions, cell motility and cell division.

In muscles, myosins generate movement by interacting with actin filaments, a fibrous track they can bind to and move along. The proteins produce motion in a mechanical step known as the power stroke.

Scientists are interested in the timing of the movement of myosin along actin filaments which is driven by the power stroke -- a process called lever arm swing. Although they knew that myosin splits ATP into its products -- phosphate and ADP -- during this process, the precise timing and sequence of these events has been unclear.

"There are millions of myosin molecules in a muscle fiber and each one individually generates a displacement," said Christopher M. Yengo, associate professor of cellular and molecular physiology. "Collectively, myosins generate a large amount of force to contract muscle. The question has always been: How does this actually work? How can these little motor proteins generate these tiny displacements?"

To investigate, the researchers needed to watch force generation happen in real time. They attached fluorescent probes to parts of the myosin motor and observed distance changes between the glowing probe sites to time the protein's force-generating movements.

They found two steps in the process: a fast step that occurs before phosphate release and a slow step prior to ADP release.

"In our study, we learned that the lever arm swing 'gates' the release of phosphate," Yengo said. "This means that myosin is extremely efficient because it only proceeds through the ATP hydrolysis cycle when it generates force and motion," Yengo said. The findings were published in the Proceedings of the National Academy of Sciences.

These insights provide details about how myosin motor proteins work, and this knowledge could advance the understanding of diseases related to movement on a molecular level.

Myosin has been implicated in certain types of congenital and delayed-onset deafness. The protein plays a role in the detection of sound waves in the inner ear. A better understanding of how myosin helps cells move and divide could even stop cancer in its tracks, Yengo said. A drug that prevents myosin from working in cancer cells could keep them from invading other cells or metastasize into different organs.

Muscle diseases are the major area of interest for myosin researchers. For example, myosin mutations are believed to be behind an inherited disease that causes the walls of the heart muscle to become too thick or too thin. An error in the timing of force generation in the heart could explain the condition.

"By knowing that information we can design drugs to correct the defect that's caused by the mutation," Yengo said.
-end-
Other investigators on this project were Darshan V. Trivedi and Anja M. Swenson from the Department of Cellular and Molecular Physiology, Penn State College of Medicine; Joseph M. Muretta and David D. Thomas, University of Minnesota; and Jonathan P. Davis, The Ohio State University. The American Heart Association supported this work.

Penn State

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.