Peering under the hood into the workings of molecular motors

December 21, 2015

Understanding how tiny molecular motors called myosins use energy to fuel biological tasks like contracting muscles could lead to therapies for muscle diseases and cancers, says a team of researchers led by Penn State College of Medicine scientists.

Myosins are proteins that use high-energy adenosine triphosphate, or ATP, to accomplish mechanical work such as muscle contractions, cell motility and cell division.

In muscles, myosins generate movement by interacting with actin filaments, a fibrous track they can bind to and move along. The proteins produce motion in a mechanical step known as the power stroke.

Scientists are interested in the timing of the movement of myosin along actin filaments which is driven by the power stroke -- a process called lever arm swing. Although they knew that myosin splits ATP into its products -- phosphate and ADP -- during this process, the precise timing and sequence of these events has been unclear.

"There are millions of myosin molecules in a muscle fiber and each one individually generates a displacement," said Christopher M. Yengo, associate professor of cellular and molecular physiology. "Collectively, myosins generate a large amount of force to contract muscle. The question has always been: How does this actually work? How can these little motor proteins generate these tiny displacements?"

To investigate, the researchers needed to watch force generation happen in real time. They attached fluorescent probes to parts of the myosin motor and observed distance changes between the glowing probe sites to time the protein's force-generating movements.

They found two steps in the process: a fast step that occurs before phosphate release and a slow step prior to ADP release.

"In our study, we learned that the lever arm swing 'gates' the release of phosphate," Yengo said. "This means that myosin is extremely efficient because it only proceeds through the ATP hydrolysis cycle when it generates force and motion," Yengo said. The findings were published in the Proceedings of the National Academy of Sciences.

These insights provide details about how myosin motor proteins work, and this knowledge could advance the understanding of diseases related to movement on a molecular level.

Myosin has been implicated in certain types of congenital and delayed-onset deafness. The protein plays a role in the detection of sound waves in the inner ear. A better understanding of how myosin helps cells move and divide could even stop cancer in its tracks, Yengo said. A drug that prevents myosin from working in cancer cells could keep them from invading other cells or metastasize into different organs.

Muscle diseases are the major area of interest for myosin researchers. For example, myosin mutations are believed to be behind an inherited disease that causes the walls of the heart muscle to become too thick or too thin. An error in the timing of force generation in the heart could explain the condition.

"By knowing that information we can design drugs to correct the defect that's caused by the mutation," Yengo said.
-end-
Other investigators on this project were Darshan V. Trivedi and Anja M. Swenson from the Department of Cellular and Molecular Physiology, Penn State College of Medicine; Joseph M. Muretta and David D. Thomas, University of Minnesota; and Jonathan P. Davis, The Ohio State University. The American Heart Association supported this work.

Penn State

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.