New framework unlocks secret life of plants, with land management to benefit

December 21, 2015

Controlling invasive plant species and planting to withstand extreme events could be the big winners from a new international study led by University of Queensland (UQ) researchers.

The study has developed an accurate framework to explain Earth's great diversity of plant growth forms, functions, and their ecological roles.

Lead author Dr Roberto Salguero-Gomez of UQ's School of Biological Sciences said the framework showed great promise to predict plant population responses to environmental change.

"Australia spends $4 billion a year to eradicate invasive plant species," he said.

"This framework could give us a better idea of which plant species are likely to become invasive under different conditions, saving taxpayers a large amount of money.

"The framework also looks at the resilience of plant populations to events such as climate change, fires, floods and hurricanes which destroy plant populations.

"It can inform land managers to understand which species are likely to be more resilient to destructive forces, leading to better land recovery projects."

Dr Salguero-Gomez said identifying patterns in life-history strategies across the tree of life was essential to predicting population persistence, extinction, and diversification.

"Understanding how life-history strategies are structured is fundamental to our understanding of the evolution, abundance, and distribution of species," he said.

"Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood."

To study the drivers behind plant life-history variation, the scientists based in Australia, Germany, Denmark, the Netherlands, England and Ireland used an approach similar to that developed decades ago for vertebrates.

They developed a two dimensional plot model, with one axis representing the pace of life from fast to slow-growing, and another axis representing the wide range of reproductive strategies.

"We used a large database known as COMPADRE to explore the life-history strategies of 418 wild plant species globally - from herbs to giant trees using the model," he said.

Research tested whether the position of a species on these axes predicted two important population performance metrics: population growth rate and speed of recovery from disturbances.

"We showed that 55 per cent of the variation in plant life-history strategies is adequately characterised using these two independent axes," he said.

"Our findings remained consistent across major habitats and have similarities with how life- history strategies are structured in mammals, birds, and reptiles. The results of our global analysis also suggest a greater relative importance of the reproductive strategy axis in plants."

Dr Salguero-Gomez said mammals and birds had previously been plotted on only one axis - whether they lived fast and died young, or were slow growing and reproduced less frequently. However, other creatures in the animal kingdom such as insects, reptiles and amphibians were yet to be plotted, creating a rich avenue for future research.

"There's so much we don't know about these other animals groups, so we plan to examine this using a sister database known as COMADRE."

Dr Salguero-Gomez is an Australian Research Council Discovery Early Career Research Award fellow and his UQ colleagues on the study were Dr Simon Blomberg and Honorary UQ Professor Yvonne Buckley of Trinity College, Ireland.

The research is published today in the Proceedings of the National Academy of Sciences (PNAS).

It is supported by the Max Planck Institute for Demographic Research, in Germany, the Australian Research Council and a Marie-Curie Career Integration grant.
-end-


University of Queensland

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.