Nav: Home

Modeling COPD and asthma in a human small airway-on-a-chip

December 21, 2015

(BOSTON) - A research team at the Wyss Institute for Biologically Inspired Engineering at Harvard University leveraged its organ-on-a-chip technology to develop a model of the human small airway in which lung inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), the third leading cause of mortality worldwide, and asthma can be studied outside the human body. As reported advanced online on December 21 in Nature Methods, the platform allows researchers to gain new insights into the disease mechanisms, identify novel biomarkers and test new drug candidates.

COPD and asthma are inflammatory reactions in the lung which can be dramatically exacerbated by viral and bacterial infections, as well as smoking. It is known that many of the associated disease processes occur in the conducting airway sections of the lung that shuttle air to and from the alveoli or air sacs. However, much less is known about how inflammation induces distinct pathological processes such as the recruitment of circulating white blood cells and the buildup of mucus, which compromise the lungs of these patients, or how clinical exacerbations are triggered.

"Inspired by our past work using the organ-on-a-chip approach to model the lung alveolus, we created a new microfluidic model of the lung small airway that recapitulates critical features of asthma and COPD with unprecedented fidelity and detail. Now with this microengineered human lung small airway, we can study lung inflammatory diseases over several weeks in chips lined by cells from both normal donors and diseased patients to gain better insight into disease mechanisms, as well as screen for new therapeutics," said Donald Ingber, M.D., Ph.D., the senior author on this work who is leading a multidisciplinary team of Wyss scientists that has been at the forefront of organ-on-chip technology. He is also the Wyss Institute's Founding Director, the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

Demand for such opportunities is especially high since small airway inflammation cannot be adequately studied in human patients or animal models and, to date, there are no effective therapies that can stop or reverse the complex and widespread inflammation-driven processes.

"To closely mimic the complex 3D cellular architecture of actual human small airways, we designed a microfluidic device that contains a fully matured human small airway epithelium with different specialized cell types exposed to air in one of its two parallel microchannels. The second channel is lined by a human vascular endothelium in which we flow medium containing white blood cells and nutrients so that the living microsystem can be maintained over weeks. We then modeled inflammatory asthma and COPD conditions by adding an asthma-inducing immune factor or by setting up the system with lung epithelial cells obtained from patients with COPD," said Remi Villenave, Ph.D., a former postdoctoral fellow in Ingber's group and the co-first author on the publication. In both cases, the team was not only able to observe highly disease- and cell type-specific changes but could also exacerbate them with agents simulating viral or bacterial infection.

"This new organ-on-a-chip technology gives us a window on molecular-scale activities in the context of living human lung tissue. It also provides us with a handle to dissect contributions of specific cell types and biochemical factors to small airway diseases, including how circulating immune cells are recruited to inflammation sites and how compromised cilia function contributes to abnormal mucus clearance in the lungs of diseased patients," said Kambez Hajipouran Benam, Ph.D., who also is a postdoctoral fellow working with Ingber and the other co-first author of the study.

Finally, the team provided proof-of-principle that the synthetic small airway-on-a-chip can be utilized as a discovery platform for disease-specific drugs and biomarkers. In collaboration with two different industrial partners -Pfizer and Merck Research Laboratories - who also helped fund the project, together with support from the Defense Advanced Research Project Agency (DARPA), the Wyss researchers showed that two drugs targeting different key molecular components of inflammatory pathways can potently suppress pathological processes in asthma and COPD-tailored small airway chips. The Wyss scientists also identified a macrophage-recruiting factor whose levels are raised by a viral mimic in the COPD model and which can be further investigated as a potential specific biomarker for viral exacerbations of COPD.

"This novel ability to build small airway chips with cells from individual patients with diseases like COPD positions us and others now to investigate the effects of genetic variability, specific immune cell populations, pharmaceutical candidates and even pandemic viruses in an entirely new and more personalized way; one that will hopefully increase the likelihood of success of future therapeutics," said Ingber.
-end-
MULTIMEDIA AVAILABLE

PRESS CONTACT


Kat J. McAlpine, katherine.mcalpine@wyss.harvard.edu, +1 617-432-8266

MULTIMEDIA CONTACT

Seth Kroll, seth.kroll@wyss.harvard.edu, +1 617-432-7758

The Wyss Institute for Biologically Inspired Engineering at Harvard Universityu uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Wyss Institute for Biologically Inspired Engineering at Harvard

Related Asthma Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
New knowledge on the development of asthma
Researchers at Karolinska Institutet in Sweden have studied which genes are expressed in overactive immune cells in mice with asthma-like inflammation of the airways.
Eating fish may help prevent asthma
A scientist from James Cook University in Australia says an innovative study has revealed new evidence that eating fish can help prevent asthma.
Academic performance of urban children with asthma worse than peers without asthma
A new study published in Annals of Allergy, Asthma and Immunology shows urban children with poorly controlled asthma, particularly those who are ethnic minorities, also suffer academically.
Asthma Controller Step Down Yardstick -- treatment guidance for when asthma improves
The focus for asthma treatment is often stepping up treatment, but clinicians need to know how to step down therapy when symptoms improve.
Asthma management tools improve asthma control and reduce hospital visits
A set of comprehensive asthma management tools helps decrease asthma-related visits to the emergency department, urgent care or hospital and improves patients' asthma control.
Asthma linked to infertility but not among women taking regular asthma preventers
Women with asthma who only use short-acting asthma relievers take longer to become pregnant than other women, according to research published in the European Respiratory Journal.
What are the best ways to diagnose and manage asthma?
A team of experts from The University of Texas Medical Branch at Galveston examined the current information available from many different sources on diagnosing and managing mild to moderate asthma in adults and summarized them.
Insomnia prevalent in patients with asthma
A team of researchers from the University of Pittsburgh has found that insomnia is highly prevalent in adults with asthma and is also associated with worse asthma control, depression and anxiety symptoms and other quality of life and health issues.
Test used to diagnose asthma may not be accurate
A new study urges caution in the use of the mannitol challenge test for asthma in non-clinical settings.
More Asthma News and Asthma Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab