Live cell imaging using a smartphone

December 21, 2016

A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment. The study is published in the open access journal PLOS ONE, making it possible for laboratories around the world to do the same thing.

Live imaging of cells is a very powerful tool for the study of cells, to learn about how cells respond to different treatments such as drugs or toxins. However, microscopes and equipment for live imaging are often very expensive.

In the present study, old standard inverted microscopes that are very abundant at Universities and hospitals were upgraded to high quality live imaging stations using a few 3D-printed parts, off-the-shelf electronics, and a smartphone. It was shown that the resultant upgraded systems provided excellent cell culture conditions and enabled high-resolution imaging of living cells.

"What we have done in this project isn't rocket science, but it shows you how 3D-printing will transform the way scientists work around the world. 3D-printing has the potential to give researchers with limited funding access to research methods that were previously too expensive," says Johan Kreuger, senior lecturer at the Department of Medical Cell Biology at Uppsala University.

"The technology presented here can readily be adapted and modified according to the specific need of researchers, at a low cost. Indeed, in the future, it will be much more common that scientists create and modify their own research equipment, and this should greatly propel technology development," says Johan Kreuger.
-end-
Rodrigo Hernández Vera et al. A modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-printed Parts, a Smartphone, and Off-The-Shelf Electronics. PLOS ONEhttp://dx.plos.org/10.1371/journal.pone.0167583

Uppsala University

Related Living Cells Articles from Brightsurf:

Catalyzing a zero-carbon world by harvesting energy from living cells
Scientists from Nagoya University have achieved a breakthrough in converting energy-deficient metabolites to a biorenewable resource thanks to a versatile catalyst.

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's PalacĂ­n group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

'Seeing' and 'manipulating' functions of living cells
Toyohashi University of Technology has given greater functionalities to atomic force microscopy (AFM).

Terahertz radiation can disrupt proteins in living cells
Researchers from the RIKEN Center for Advanced Photonics and collaborators have discovered that terahertz radiation, contradicting conventional belief, can disrupt proteins in living cells without killing the cells.

CSIC researchers use whole living cells as 'templates' to seek for bioactive molecules
A study performed by researchers at the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) from the Spanish National Research Council (CSIC) pioneers the use of whole living cells (human lung adenocarcinoma) in dynamic combinatorial chemistry systems.

A new tool to map the flow of info within living cells
UNC-Chapel Hill, UT Southwestern Medical Center researchers created a way to study the intricacies of intercellular signaling -- when, where, and how tiny parts of cells communicate -- to make cells move.

Genetically engineering electroactive materials in living cells
Merging synthetic biology and materials science, researchers genetically coaxed specific populations of neurons to manufacture electronic-tissue 'composites' within the cellular architecture of a living animal, a new proof-of-concept report reveals.

Physics of Living Systems: How cells muster and march out
Many of the cell types in our bodies are constantly on the move.

Bioprinting: Living cells in a 3D printer
A high-resolution bioprinting process has been developed at TU Wien (Vienna): Cells can now be embedded in a 3D matrix printed with micrometer precision -- at a printing speed of one meter per second, orders of magnitude faster than previously possible.

Read More: Living Cells News and Living Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.