Nav: Home

Live cell imaging using a smartphone

December 21, 2016

A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment. The study is published in the open access journal PLOS ONE, making it possible for laboratories around the world to do the same thing.

Live imaging of cells is a very powerful tool for the study of cells, to learn about how cells respond to different treatments such as drugs or toxins. However, microscopes and equipment for live imaging are often very expensive.

In the present study, old standard inverted microscopes that are very abundant at Universities and hospitals were upgraded to high quality live imaging stations using a few 3D-printed parts, off-the-shelf electronics, and a smartphone. It was shown that the resultant upgraded systems provided excellent cell culture conditions and enabled high-resolution imaging of living cells.

"What we have done in this project isn't rocket science, but it shows you how 3D-printing will transform the way scientists work around the world. 3D-printing has the potential to give researchers with limited funding access to research methods that were previously too expensive," says Johan Kreuger, senior lecturer at the Department of Medical Cell Biology at Uppsala University.

"The technology presented here can readily be adapted and modified according to the specific need of researchers, at a low cost. Indeed, in the future, it will be much more common that scientists create and modify their own research equipment, and this should greatly propel technology development," says Johan Kreuger.
-end-
Rodrigo Hernández Vera et al. A modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-printed Parts, a Smartphone, and Off-The-Shelf Electronics. PLOS ONEhttp://dx.plos.org/10.1371/journal.pone.0167583

Uppsala University

Related Living Cells Articles:

Large-scale production of living brain cells enables entirely new research
Important pieces of the puzzle to understand what drives diseases such as Alzheimer's and Parkinson's are still missing today.
UVA finds way to view genes inside living cells
3-D maps of gene locations could have a huge impact in our understanding of human health and in the battle against disease.
Researchers develop 'living diode' using cardiac muscle cells
Research from the University of Notre Dame brings scientists one step closer to developing new forms of biorobotics and novel treatment approaches for several muscle-related health problems such as muscular degenerative disorders, arrhythmia and limb loss.
New tool shines light on protein condensation in living cells
Researchers have unveiled a new tool that uses light to manipulate proteins inside cells, causing liquid-like structures known as membraneless organelles to condense out of a cell's watery environment.
Three new ASCB celldance video awards take you inside living cells
Powerful new live cell imaging technologies allow three ASCB member labs to take you inside the world of living cells in three new Celldance short video releases.
Synthetic membranes created to mimic properties of living cells
Biochemists at the University of California San Diego have developed artificial cell membranes that grow and remodel themselves in a manner similar to that of living mammalian cells.
Extracting the content of single living cells
Biologists are increasingly interested in the behavior of individual cells, rather than the one of an entire cell population.
Nanoprobe enables measurement of protein dynamics in living cells
A team of researchers from Massachusetts General Hospital and the Rowland Institute at Harvard University have used a specialized nanoprobe developed by the Harvard/Rowland investigators to directly measure levels of key proteins within living, cultured cells.
Controlling RNA in living cells
MIT researchers have developed a system of modular proteins can be used to track or manipulate RNA inside living cells.
Cellphone principles help microfluidic chip digitize information on living cells
Phone calls and text messages reach you wherever you are because your phone has a unique identifying number that sets you apart from everybody else on the network.

Related Living Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...