Nav: Home

Why big brains are rare

December 21, 2016

As a species we're so brain-proud it doesn't occur to most of us to ask whether a big brain has disadvantages as well as cognitive benefits.

"We can think of tons of benefits to a larger brain, but the other side of that is brain tissue is incredibly 'expensive' and increasing brain size comes at a heavy cost," said Kimberley V. Sukhum, a graduate student in biology in Arts & Sciences at Washington University in St. Louis.

So evolving a large brain requires either a decrease in other demands for energy or an increase in overall energy consumption, said Bruce Carlson, Sukhum's advisor and professor of biology in Arts & Sciences.

Previous studies in primates, frogs and toads, birds and fish found support for both hypotheses, leaving the evolutionary path to a larger brain unclear.

Carlson's lab studies mormyrid electric fishes from Africa, which use weak electric discharges to locate prey and to communicate with one another.

The mormyrids have a reputation as large-brained fish and indeed one species (the fish in the top photo) has a brain that constitutes 3 percent of its body size, comparable to human brains, which range from 2 to 2.5 percent. But it was unclear whether other mormyrids were equally brainy.

Examining 30 out of the more than 200 species in the mormyrid family, the scientists discovered that they have a wide variety of brain sizes.

"We realized this meant the fish presented a great opportunity to study the metabolic costs of braininess," Sukhum said.

Using oxygen consumption and the ability to tolerate hypoxia as proxies for energy use and energy demand, the scientists put the fish to the test. Sure enough, they found that the largest brained species had the highest demand for oxygen and the smallest brained species the lowest.

The results, published in the Dec. 21 issue of Proceedings of the Royal Society B, make a provocative pairing with an article published in the May 19, 2016 issue of Nature finding that large-brained humans have a much higher metabolic rate than the great apes.

What is the alternative?

Coming on this problem for the first time, you might be excused for thinking that of course it is necessary to eat more to feed a big brain.

Many studies, however, have shown that larger brains can be accommodated by skimping on other energetically expensive organs or processes.

For example a study of 30 species of frogs and toads published this September in The American Naturalist found that in these animals, the bigger the brain, the smaller the gut, -- another expensive organ.

Early studies of humans also suggested -- in part because the human basal metabolic rate is broadly similar to that of other primates -that the smaller human gut similarly accommodated the big human brain.

(How could a smaller gut, while it might use less energy, also supply more energy? The argument was that gut shrinkage must have coincided with a switch to a more nutritious diet includingf meat and tubers, and cooked food.)

In any case, more recent studies that looked not just at primates but rather at the great apes, our closest evolutionary relatives, found instead that basal metabolic rate and total energy expenditure scale with brain size.

Carlson suggests that confusion arose in earlier studies of brain size because big brains entail different costs and arise through different mechanisms than medium-sized brains. It might be possible to accommodate moderate increases in brain size, he said, by skimping on another organ or modifying behavior,. But the really big brains demand increases in total energy intake.

It's not all up-side

Having a body that needs to be fed more just to exist is a risky strategy both for mormyrids and people.

Carlson and Sukhum point out that the mormyrids' ability to sense their environment by "electrolocation" helps them forage more efficiently. Some of the largest-brained mormyrids also have helpful appendages, such as the Schnauzenorgan or a tube snout that helps the fish extract invertebrates from crevices.

Despite these adaptations, the extravagant energy needs of large-brained fish may restrict them to environments where oxygen concentrations are consistently high, such as large fast-moving rivers. Meanwhile their smaller-brained cousins may be generalists able to survive in many more areas, including low-oxygen swamps as well as fast-moving rivers.

People, too, are remarkably vulnerable to any interruption in the food supply because of their big-brain energy budgets. We might mitigate this risk by efficient bipedal walking or cooking and sharing food -- but we also do it by storing fat. Body fat, the Nature authors point out, provides an important buffer against food shortfalls.
-end-


Washington University in St. Louis

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.