Scientists complete yearlong pulsar timing study after reviving dormant radio telescopes

December 21, 2020

While the scientific community grapples with the loss of the Arecibo radio telescope, astronomers who recently revived a long-dormant radio telescope array in Argentina hope it can help modestly compensate for the work Arecibo did in pulsar timing. Last year, scientists at Rochester Institute of Technology and the Instituto Argentino de Radioastronomi­a (IAR) began a pulsar timing study using two upgraded radio telescopes in Argentina that previously lay unused for 15 years.

The scientists are releasing observations from the first year in a new study to be published in The Astrophysical Journal. Over the course of the year, they studied the bright millisecond pulsar J0437âˆ'4715. Pulsars are rapidly rotating neutron stars with intense magnetic fields that regularly emit radio waves, which scientists study to look for gravitational waves caused by the mergers of supermassive black holes.

Professor Carlos Lousto, a member of RIT's School of Mathematical Sciences and the Center for Computational Relativity and Gravitation (CCRG), said the first year of observations proved to be very accurate and provided some bounds to gravitational waves, which can help increase the sensitivity of existing pulsar timing arrays. He said that over the course of the next year they plan to study a younger, less stable pulsar that is more prone to glitches. He hopes to leverage machine learning and artificial intelligence to better understand the individual pulses emitted by pulsars and predict when glitches occur.

"Every second of observation has 11 pulses and we have thousands of hours of observation, so it is a lot of data," said Lousto. "What we hope to accomplish is analogous to monitoring the heartbeat one by one to learn to predict when someone is going to have a heart attack."

Lousto said Ph.D. students from RIT's programs in astrophysical sciences and technology, mathematical modeling, and computer science are at the forefront of the analysis. RIT has a remote station called the Pulsar Monitoring in Argentina Data Enabling Network (PuMA-DEN) to control the radio telescopes and store the data collected. He said the opportunities presented by the collaboration are important for the students from the College of Science and Golisano College of Computing and Information Sciences because "the careers in astronomy are changing very quickly, so you have to keep up with new technology and new ideas."

In the longer term, Lousto said RIT and IAR are seeking out other radio telescopes that can be upgraded for pulsar timing studies, further filling the gap left behind by Arecibo. RIT and IAR's observations seek to contribute to the larger efforts of the North American Nanohertz Observatory for Gravitation Waves (NANOGrav) and the International Pulsar Timing Array, an collaboration of scientists working to detect and study the impact of low frequency gravitational waves passing between the pulsars and the Earth.
-end-
For more information, go to https://arxiv.org/pdf/2010.00010.pdf

Rochester Institute of Technology

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.