Device refines analysis of materials for fuel cells and batteries

December 21, 2020

A new device designed to help scientists study in detail what happens during electrochemical reactions has been developed by researchers at the Center for Innovation in New Energies (CINE) in collaboration with researchers at the Brazilian Synchrotron Light Laboratory (LNLS), a unit of the Brazilian Center for Research in Energy and Materials (CNPEM). CINE is an Engineering Research Center (ERC) established by FAPESP (São Paulo Research Foundation) and Shell and is hosted by the University of Campinas (UNICAMP) in the state of São Paulo, Brazil.

The device, a spectroelectrochemical cell, improves the performance of fuel cells, electrolyzers, batteries and other appliances used to convert chemical energy into electricity or vice-versa. A great deal of research on equipment of this kind has been done as part of the effort to develop renewable energy generating and storage solutions.

The new device is a cell that can be used to monitor electrochemical experiments involving a range of spectroscopic instruments that operate in specific frequency bands of the electromagnetic spectrum, such as infrared, visible light, and X-rays, and to analyze multilaterally the behavior of materials in electrochemical reactions - both molecules in electrolyte solution and electrodes.

An article on the research is published as a front cover feature by ChemElectroChem, alongside an interview with the last author, Pablo Sebastián Fernández, a researcher at CINE.

"The main difference and advantage of our device is that different kinds of analysis can be performed with a single cell, thanks to a window that can be swapped out in accordance with the analysis of interest," Fernández told Agência FAPESP. "It's possible to use windows transparent to infrared, windows transparent to visible light and windows transparent to X-rays, obtaining spectroscopic analysis in each of these frequency bands, among other things."

This means a single cell is capable of in situ infrared spectroscopy, Raman spectroscopy (which uses visible light), and X-ray absorption and diffraction, among other techniques.

Aside from the special window, the device contains all the normal components of an electrochemical cell, such as a work electrode, counterelectrode, reference electrode, and electrolyte with salts and molecules of interest.

"The electromagnetic radiation beams that pass through the window interact with both the molecules of interest, which are in the electrolyte, and the catalyst whose efficiency is being studied," Fernández said.

Another advantage, he added, is that the electrolytic solution can be changed during the analysis and measured under flow conditions, thanks to the cell's architecture.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Fuel Cells Articles from Brightsurf:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.

Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars

AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.

Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.

Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.

Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.

Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.

Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Read More: Fuel Cells News and Fuel Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.