Experiments first verify distributed quantum phase estimation

December 21, 2020

Prof. PAN Jianwei and his colleges from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) have achieved the experimental verification of distribution quantum phase estimation for the first time. This work was published on Nature Photonics.

Distributed metrology is a key tool to measure several locations from remote simultaneously with high precision, one typical task of which is the monitoring of stress field and temperature field of bridge and airplane.

In line with the development of quantum technology, metrology also entered quantum era. When targeting on the measurement of multiple parameters distributed in space, distributed quantum metrology can enhance the sensitivity of measurements beyond the classical limits.

However, the researchers are wondering how to achieve entangled states for optimal precision of multiparameter measurement, which was known as the ultimate Heisenberg limit.

In this study, Prof. PAN's team designed the optimal measurement scheme using entangled photons, and demonstrated measurement of individual phase shifts and their average. The precision went beyond the theory limit of classical sensor.

By considering both photon entanglement and coherence, Prof. PAN's team further demonstrated linear combination of multiple phase shifts with the total number of parameters to measure up to 21. This combined scheme both enlarged the number of measurable parameters and enhanced the precision compared with using photon entanglement only.

This study assesses the precision of measurement in different entanglement strategies and provided the verification of the benefit of entanglement and coherence for distributed quantum metrology. It lays a foundation for future application of high-precision distributed quantum metrology.

University of Science and Technology of China

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.