New study: available drugs can prevent rejection and tissue injury after transplantation

December 21, 2020

Philadelphia, December 21, 2020 - Controlling inflammation after transplantation of organs, cells, or tissues is critical for graft survival; however, it can be difficult. Continuing injuries due to chronic rejection can be particularly problematic. Now, a team of researchers from Albert Einstein College of Medicine report that neutralizing the cell signaling molecule, tumor necrosis factor (TNF), can prevent cascades of injurious molecules and signals after cell transplantation in The American Journal of Pathology, published by Elsevier.

"New insights into immune inflammatory mediators indicate that rejection and tissue injury can be avoided with available drugs," explained director of the research team Sanjeev Gupta, MD, Department of Medicine and of Pathology, and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. "The ability to prevent and/or control tissue injury will improve graft survival for transplantation medicine, advance use of cells and tissues for regenerative medicine, and offer insights for controlling inflammation-related tissue injury in other circumstances."

Transplanting organs from unrelated or mismatched donors into individuals triggers immunological defenses against "foreign" material. Development of immunosuppressive drugs to block lymphocyte responses has delivered success in the short term, but chronic rejection and tissue injury over long periods due to unidentified mechanisms and processes can lead to the loss of transplanted organs.

To understand the factors at work in tissue rejection, the researchers at Albert Einstein College of Medicine developed liver cell transplantation models in laboratory rats with or without immunosuppression, using drugs routinely given to humans. The state of inflammation was studied using gene expression arrays to query the activation of soluble signals associated with various cell types. The analysis was guided by recent advances in mapping gene expression differences and the networks affected during complex interactions using commercially available computer software. The software queries the scientific literature to suggest relationships and negative or positive reactions in genes.

The studies identified differences in the expression of 40-50 soluble networks. In particular, the activation of TNF, a major inflammatory mediator, and its cellular receptors is prominent, persisting over the long term.

Blocking TNF stopped the activation of most other inflammatory signals, revealing that it is a "master switch" for orchestrating cytokines, chemokines, and receptors arising from the body's innate or inbuilt systems defending against foreign material, e.g., microbes, viruses, and mismatched transplants. To further understand the role of TNF, the researchers neutralized it with the well-established drugs etanercept or thalidomide to improve cell transplant outcomes alongside conventional immunosuppression with tacrolimus and mycophenolate mofetil.

Computer mapping of gene expression showed that blocking TNF markedly decreases the recruitment and activity of inflammatory cells. Other studies provided direct evidence that blocking TNF led to superior survival and proliferation of transplanted cells, regenerating the liver far more effectively.

Lead author Fadi-Luc Jaber, PhD, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA, commented "The efficacy of this anti-inflammatory mechanism for liver regeneration surprised me. These mechanisms will provide further means to treat liver conditions."

"The translational potential of these findings is exciting because the additional inflammatory markers and genes offer further means for diagnosing the pathology of organ rejection in individuals. This type of inflammatory interference will decrease tissue injury, promote graft survival, and survival of transplanted cells and engineered tissues, and help advance organ regeneration," observed Dr. Gupta. "The inflammatory cascades orchestrated through TNF also hold lessons for the pathology in other less well understood conditions, such as COVID-19."
-end-


Elsevier

Related Regenerative Medicine Articles from Brightsurf:

Stem cells: new insights for future regenerative medicine approaches
The study published in Open Biology unravels important data for a better understanding of the process of division in stem cells and for the development of safer ways to use them in medicine.

Engineered developmental signals could illuminate regenerative medicine
For a tiny embryo to develop into an adult organism, its cells must develop in precise patterns and interact with their neighbors in carefully orchestrated ways.

A new discovery in regenerative medicine
An international collaboration involving Monash University and Duke-NUS researchers have made an unexpected world-first stem cell discovery that may lead to new treatments for placenta complications during pregnancy.

New research into stem cell mutations could improve regenerative medicine
Research from the University of Sheffield has given new insight into the cause of mutations in pluripotent stem cells and potential ways of stopping these mutations from occurring.

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.

NUS Medicine researchers can reprogramme cells to original state for regenerative medicine
Scientists from NUS Medicine have found a way to induce totipotency in embryonic cells that have already matured into pluripotency.

A new material for regenerative medicine capable to control cell immune response
Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

Optoceutics: A new technique using light for regenerative medicine
Researchers in Italy at IIT-Istituto Italiano di Tecnologia used visible light together with photo-sensitive and biocompatible materials to facilitate the formation of new blood vessels in vitro.

Major stem cell discovery to boost research into development and regenerative medicine
A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells.

Spinning-prism microscope helps gather stem cells for regenerative medicine
Pluripotent stem cells are crucial to regenerative medicine, but better screening methods are needed to isolate safe and effective cells for medical use.

Read More: Regenerative Medicine News and Regenerative Medicine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.