Evidence for sun-climate link reported by UMaine scientists

December 22, 2004

A team led by University of Maine scientists has reported finding a potential link between changes in solar activity and the Earth's climate. In a paper due to be published in an upcoming volume of the Annals of Glaciology, Paul Mayewski, director of UMaine's Climate Change Institute, and 11 colleagues from China, Australia and UMaine describe evidence from ice cores pointing to an association between the waxing and waning of zonal wind strength around Antarctica and a chemical signal of changes in the sun's output.

At the heart of the paper, Solar Forcing of the Polar Atmosphere, are calcium, nitrate and sodium data from ice cores collected in four Antarctic locations and comparisons of those data to South Pole ice core isotope data for beryllium-10, an indicator of solar activity. The authors also point to data from Greenland and the Canadian Yukon that suggest similar relationships between solar activity and the atmosphere in the northern hemisphere. They focus on years since 1400 when the Earth entered a roughly 500-year period known as the Little Ice Age.

The researchers' goal is to understand what drives the Earth's climate system without taking increases in greenhouse gases into account, says Mayewski. "There are good reasons to be concerned about greenhouse gases, but we should be looking at the climate system with our eyes open," he adds. Understanding how the system operates in the absence of human impacts is important for responding to climate changes that might occur in the future.

Mayewski founded the International Transantarctic Scientific Expedition (ITASE) and is the co-author of The Ice Chronicles: The Quest to Understand Global Climate Change, published in 2002 with Frank White. The United States' ITASE office is located at UMaine. Antarctic locations used in the paper include: Law Dome, a 4,576-foot high ice mound located about 68 miles from the coast facing the Indian Ocean and the site of an Australian research station; Siple Dome, a 2,000-foot high ice covered mound located between two ice streams that flow out of the Transantarctic Mountains into the Ross ice shelf, and the site of a U.S. research station; and two ITASE field sites west of Siple Dome where ice cores were collected during field surveys in 2000 and 2001.

The authors are Mayewski, Kirk A. Maasch, Eric Meyerson, Sharon Sneed, Susan Kaspari, Daniel Dixon, and Erich Osterberg, all from UMaine; Yping Yan of the China Meterological Association; Shichang Kang of UMaine and the Chinese Academy of Sciences; and Vin Morgan, Tas van Ommen and Mark Curran of the Antarctic Climate and Ecosystems CRC in Tasmania.

Since at least the 1840s when sunspot cycles were discovered, scientists have proposed that solar variability could affect the climate, but direct evidence of that relationship and understanding of a mechanism have been lacking.

The ice core data show, the authors write, that when solar radiation increases, more calcium is deposited at Siple Dome and at one of the ITASE field sites. The additional calcium may reflect an increase in wind strength in mid-latitude regions around Antarctica, they add, especially over the Indian and Pacific Oceans. Calcium in West Antarctic ice cores is thought to derive mainly from dust in Australia, Africa and South America and from sea salt in the southern ocean.

That finding, they note, is consistent with other research suggesting that the sun may affect the strength of those mid-latitude winds through changes in stratospheric ozone over Antarctica.

The authors also refer to sodium data from Siple Dome ice cores that have been reported by Karl Kreutz, director of UMaine's stable isotope laboratory. Changes in sodium appear to be associated with air pressure changes over the South Pacific.

Ice core data from Law Dome focus on changes in nitrate and may reflect changing wind patterns over Antarctica. The wind currents that bring nitrate to the continent, however, are less well known than those that carry sodium and calcium.

Researchers in the UMaine Climate Change Institute (http://www.climatechange.umaine.edu/) have focused on the relationship between solar variability and climate, particularly the use of isotopes in tree rings and ice cores to provide an indication of the sun's strength. The ice core data reported in the paper demonstrates a direct atmospheric consequence associated with changing solar radiation.
-end-


University of Maine

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.