Researchers develop new method for studying 'mental time travel'

December 22, 2005

Neuroscientists at Princeton University have developed a new way of tracking people's mental state as they think back to previous events -- a process that has been described as "mental time travel."

The findings, detailed in the Dec. 23 issue of Science, will aid efforts to learn more about how people mine the recesses of memory and could have a wide-ranging impact in the field of neuroscience, including studies of brain disorders such as Alzheimer's disease.

The researchers showed nine participants a series of pictures and then asked them to recall what they had seen. By applying a computerized pattern-recognition program to brain scanning data, the researchers were able to show that the participants' brain state gradually aligned with their brain state from when they first studied the pictures. This supports the theory that memory retrieval is a form of mental time travel.

In addition, by measuring second-by-second changes in how well participants were recapturing their previous brain state, the researchers were able to predict what kind of item the subjects would recall next, several seconds before they actually remembered that item.

The study was conducted by Kenneth Norman, an assistant professor of psychology, and Sean Polyn, who earned his Ph.D in psychology from Princeton in 2005 and is a now a postdoctoral researcher at the University of Pennsylvania. Polyn and Norman collaborated with Jonathan Cohen, director of Princeton's Center for the Study of Brain, Mind and Behavior, and Vaidehi Natu, a researcher in Norman's lab.

"When you try to remember something that happened in the past, what you do is try to reinstate your mental context from that event," said Norman. "If you can get yourself into the mindset that you were in during the event you're trying to remember, that will allow you to remember specific details. The techniques that we used in this study allow us to visualize from moment to moment how well subjects are recapturing their mindset from the original event."

In the experiment, participants studied a total of 90 images in three categories -- celebrity faces, famous locations and common objects -- and then attempted to recall the images. Norman and his colleagues used Princeton's functional magnetic resonance imaging (fMRI) scanner to capture the participants' brain activity patterns as they studied the images. They then trained a computer program to distinguish between the patterns of brain activity associated with studying faces, locations or objects.

The computer program was used to track participants' brain activity as they recalled the images to see how well it matched the patterns associated with the initial viewing of the images. The researchers found that patterns of brain activity for specific categories, such as faces, started to emerge approximately five seconds before subjects recalled items from that category -- suggesting that participants were bringing to mind the general properties of the images in order to cue for specific details.

"What we have learned over the years is that what you get out of memory depends on how you cue memory. If you have the perfect cue, you can remember things that you had no idea were floating around in your head," Norman said. "Our method gives us some ability to see what cues participants are using, which in turn gives us some ability to predict what participants will recall. We are hopeful that, in the long run, this kind of work will help psychologists develop better theories of how people strategically cue memory, and also will suggest ways of making these cues more effective."
-end-
The study was funded by grants from the National Institute of Mental Health.

Princeton University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.