Stanford evolution research cited by Science as a 2005 breakthrough

December 22, 2005

When the editors at Science looked back over the research reported in 2005, they decided that several high-impact discoveries made evolution stand out as the Breakthrough of the Year. Among the research highlighted is work by David Kingsley, PhD, professor of developmental biology at Stanford University School of Medicine, who studies the evolutionary process in a diverse group of fish called the stickleback.

In a roundup of breakthroughs to be published in the journal's Dec. 23 issue, Science points out that evolution is the underpinning of all biological research. "Today evolution is the foundation of all biology, so basic and all-pervasive that scientists sometimes take its importance for granted," the editors wrote.

Kingsley's highlighted work was published in the March 25 issue of Science, when he reported finding that 15 isolated freshwater stickleback populations all lost their bony armor through mutations in the same gene. This was among the first times that scientists had shown the same genetic change was responsible for an evolutionary adaptation in disparate populations.

"Our work shows that even major morphological changes are controlled by relatively simple mechanisms," Kingsley said.

Many researchers have previously shown evolution in biochemical processes, such as antibiotic resistance. But some evolution critics had argued that it would be impossible to evolve large morphological changes in natural populations. "That is obviously false," said Kingsley, who is also a Howard Hughes Medical Institute investigator. "Sticklebacks with major changes in skeletal armor and fin structures are thriving in natural environments. And the major differences between forms can now be traced to particular genes."

Sticklebacks evolved from a relatively uniform marine population into today's broad spectrum of shapes and sizes when the last Ice Age ended roughly 10,000 years ago. Because ocean fish quickly evolved into such distinct populations when they colonized new freshwater lakes and streams, they are an ideal model for understanding how animals adapt to their unique environments.

The Dec. 23 issue of Science highlights several additional advances in evolutionary research, saying, "2005 stands out as a banner year for uncovering the intricacies of how evolution actually proceeds." Among the featured advances are the sequencing of the chimpanzee genome and of the 1918 avian bird flu genome, and multiple studies showing how populations divide into distinct species.

The editors say that in addition to being interesting work, advances in evolutionary biology can directly aid human health by helping researchers understand how flu spreads or aiding in the discovery of disease-related genes.
-end-
Note: More information about David Kingsley's research is available at: http://mednews.stanford.edu/releases/2005/march/stickleback.html

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.

Stanford University Medical Center

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.