Cellular pathway yields potential new weapon in vaccine arsenal

December 22, 2006

When a cell has to destroy any of its organelles or protein aggregates, it envelops them in a membrane, forming an autophagosome, and then moves them to another compartment, the lysosome, for digestion. Two years ago, Rockefeller University assistant professor Christian Münz showed that this process, called autophagy, sensitizes cells for recognition by the immune system's helper T cells. But he didn't know how often this pathway is used or how efficient it is. Now, a new study published online today in the journal Immunity goes a long way toward addressing these questions and shows that the pathway is so common that it could be a valuable new way of boosting vaccine efficacy.

There are two types of T cells: Helper T cells encourage their counterpart, killer T cells, to hunt down and attack invading pathogens. T cells typically recognize antigens only once they're presented to them by major histocompatibility compex (MHC) scaffolding molecules on a cell's surface. Antigens on MHC class I molecules are recognized by killer T cells and had originally been thought to come only from sources inside a cell (proteins from the nucleus or other cellular part); those on MHC class II molecules are recognized by helper T cells and had been thought to come from sources outside the cell, such as fragments of dead, infected cells. But as Münz discovered two years ago, an autophagy pathway allows intracellular antigens to be presented on MHC class II molecules.

Now Münz, head of Rockefeller's Laboratory of Viral Immunobiology, and Dorothee Schmid, a graduate student in the lab, have shown that the autophagy pathway is far more widespread than they thought: They found that a surprising number of cells with MHC class II molecules on their surfaces used the autophagy pathway. In skin (epithelial) cells and two other types of immune cells (dendritic and B cells), 50 to 80 percent of the autophagosomes moved into the loading compartment for MHC class II molecules. "For types of cells that upregulate MHC class II upon inflammation -- epithelial cells of infected organs, for instance -- one could assume that they might actually use the autophagy pathway fairly frequently," Münz says.

Then, to test the pathway's effectiveness, the researchers targeted an influenza antigen directly to autophagosomes. They found that they were able to increase antigen presentation by MHC class II molecules, subsequently boosting helper T cell recognition of viral antigens. "This targeting pathway could be very efficient for vaccine development," Münz says, especially for recombinant viral vaccines like those against HIV. "Killer T cell responses are usually short-lived. But if you can increase recognition by helper T cells, then you'll be more likely to maintain the killer T cell response and establish immunological memory."
-end-


Rockefeller University

Related Immune Cells Articles from Brightsurf:

Gut immune cells may help send MS into remission
An international research team led by UCSF scientists has shown, for the first time, that gut immune cells travel to the brain during multiple sclerosis (MS) flare-ups in patients.

Immune cells sculpt circuits in the brain
Brain immune cells, called microglia, protect the brain from infection and inflammation.

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.

Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.

Read More: Immune Cells News and Immune Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.