Tau disrupts neural communication prior to neurodegeneration

December 22, 2010

A new study is unraveling the earliest events associated with neurodegenerative diseases characterized by abnormal accumulation of tau protein. The research, published by Cell Press in the December 22 issue of the journal Neuron, reveals how tau disrupts neuronal communication at synapses and may help to guide development of therapeutic strategies that precede irreversible neuronal degeneration.

Tau normally contributes to the supportive framework of proteins in the cell. It is well established that abnormal tau sometimes clumps into neuron-damaging filamentous deposits and that aggregates of tau with multiple phosphate groups attached are a defining feature of neurodegenerative disorders called "tauopathies", which include Alzheimer's disease and other dementias.

"Research has shown that healthy neurons have more tau in the axon and less in the cell body and dendrites, and that this gradient is reversed in neurodegenerative disorders like Alzheimer's," explains study author, Dr. Karen H. Ashe from the University of Minnesota. "Although studies have shown that accumulation of tau in dendrites induced neurodegeneration, they do not address how tau diminished brain function at preclinical disease stages preceding neurodegeneration."

Dr. Ashe, co-author Dr. Dezhi Liao, and their colleagues investigated how tau induces early memory deficits and disrupts neuronal communication, prior to obvious neuron damage. The researchers found that early accumulation of hyperphosphorylated tau in dendrites and dendritic spines disrupted communication coming in from other neurons. Dendritic spines are sites where there is a synapse between two neurons. The phosphorylation state of tau played a critical role in mediating tau mislocalization and subsequent impairment of synaptic communication.

"These findings capture what is likely the earliest synaptic dysfunction that precedes synapse loss in tauopathies and provide an important mechanistic link between tau phosphorylation and the mislocalization of tau to dendritic spines," concludes Dr. Liao. "Understanding the key interactions that occur prior to neuronal loss will become increasingly important as preventative strategies shift the timing of interventions to pre-degenerative phases of disease," adds Dr. Ashe. "The aberrant mislocalization of tau proteins in dendritic spines might be a novel target in these strategies."
-end-
For more research news published by Neuron, go to http://www.eurekalert.org/jrnls/cell/pages/neuron.php

Cell Press

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.