Some cancer drugs may block cellular 'cross talk' but not kill cancer cells

December 22, 2010

AURORA, Colo. (Dec. 22, 2010)--A class of drugs thought to kill cancer cells may in fact block "cross talk" between the cancer cell and normal immune cells, resulting in reduced cancer growth and spread--a discovery that could significantly alter the way cancer drugs are evaluated in the future.

Researchers at the University of Colorado Cancer Center demonstrated the discovery in bladder cancer, the fifth most common cancer in the United States. Bladder cancer will kill about 14,000 Americans this year, most of whom will die as a result of the disease's spread to other organs in a process called metastasis.

The scientists showed that endothelin-A receptor antagonist drugs are only effective at blocking the start of cancer spread to other organs, not treating large, established primary-or distant-site tumors. The study was published online Dec. 22, 2010, in the Journal of Clinical Investigation.

"We discovered that these drugs block the 'tumor host interactions' found at sites of metastasis, which is what reduces tumor growth at these sites," said lead author Dan Theodorescu, MD, PhD, director of the University of Colorado Cancer Center and professor of surgery and pharmacology at the University of Colorado School of Medicine. "However, unless the drugs are used early, they have minimal or no effect."

Endothelin-A receptor antagonist drugs block the action of a protein called endothelin 1 [ET-1], thought to be involved in stimulating cancer cell growth and spread. Theodorescu's lab discovered that ET-1 attracts immune cells called macrophages to cancer cells lodged in the lungs. The macrophages start making factors that stimulate the cancer cells in the lungs to grow--called metastatic colonization--which significantly decreases the patient's chance of survival.

In the past decade, two endothelin-A receptor antagonist drugs--Abbott's atrasentan and AstraZeneca's zibotentan--have had difficulties in large phase 3 clinical trials. Both drugs were tested in a large number of patients with advanced cancer, and neither drug attained its desired effects. Most likely, Theodorescu said, the drugs were given after the window of opportunity for them to work had closed.

"Had we known this before the trials, we wouldn't have used them to try to reduce large, established tumors," he said. "We would have used them to try to suppress the appearance of metastasis. This new information has important implications for how we test drugs for effectiveness before human use and then on how we select patients in clinical trials with these agents, especially since many types of cancer secrete ET-1."
-end-
About the University of Colorado Cancer Center

The University of Colorado Cancer Center is the Rocky Mountain region's only National Cancer Institute-designated comprehensive cancer center. NCI has given only 40 cancer centers this designation, deeming membership as "the best of the best." Headquartered on the University of Colorado Denver Anschutz Medical Campus, UCCC is a consortium of three state universities (Colorado State University, University of Colorado at Boulder and University of Colorado Denver) and five institutions (The Children's Hospital, Denver Health, Denver VA Medical Center, National Jewish Health and University of Colorado Hospital). Together, our 400+ members are working to ease the cancer burden through cancer care, research, education and prevention and control. Learn more at www.uccc.info.

University of Colorado Anschutz Medical Campus

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.