Average temperature in Finland has risen by more than two degrees

December 22, 2014

According to a recent University of Eastern Finland and Finnish Meteorological Institute study, the rise in the temperature has been especially fast over the past 40 years, with the temperature rising by more than 0.2 degrees per decade. "The biggest temperature rise has coincided with November, December and January. Temperatures have also risen faster than the annual average in the spring months, i.e., March, April and May. In the summer months, however, the temperature rise has not been as significant," says Professor Ari Laaksonen of the University of Eastern Finland and the Finnish Meteorological Institute. As a result of the temperature rising, lakes in Finland get their ice cover later than before, and the ice cover also melts away earlier in the spring. Although the temperature rise in the actual growth season has been moderate, observations of Finnish trees beginning to blossom earlier than before have been made.

Temperature has risen in leaps

The annual average temperature has risen in two phases, the first being from the beginning of the observation period to the late 1930s, and the second from the late 1960s to present. Since the 1960s, the temperature has risen faster than ever before, with the rise varying between 0.2 and 0.4 degrees per decade. Between the late 1930s and late 1960s, the temperature remained nearly steady. "The stop in the temperature rise can be explained by several factors, including long-term changes in solar activity and post-World War II growth of human-derived aerosols in the atmosphere. When looking at recent years' observations from Finland, it seems that the temperature rising is not slowing down," University of Eastern Finland researcher Santtu Mikkonen explains.

The temperature time series was created by averaging the data produced by all Finnish weather stations across the country. Furthermore, as the Finnish weather station network wasn't comprehensive nation-wide in the early years, data obtained from measurement stations in Finland's neighbouring countries was also used.

Finland is located between the Atlantic Ocean and the continental Eurasia, which causes great variability in the country's weather. In the time series of the average temperature, this is visible in the form of strong noise, which makes it very challenging to detect statistically significant trends. The temperature time series for Finland was analysed by using a dynamic regression model. The method allows the division of the time series into sections indicating mean changes, i.e. trends, periodic variation, observation inter-dependence and noise. The method makes it possible to take into consideration the seasonal changes typical of Nordic conditions, as well as significant annual variation.
For further information, please contact:

Santtu Mikkonen, PhD, tel. +358403552319, santtu.mikkonen (at) uef.fi
University of Eastern Finland

Professor Ari Laaksonen, tel. +358405137900, ari.laaksonen (at) fmi.fi
Finnish Meteorological Institute and University of Eastern Finland

S. Mikkonen, M. Laine, H. M. Mäkelä, H. Gregow, H. Tuomenvirta, M. Lahtinen, A. Laaksonen Trends in the average temperature in Finland, 1847'2013

Stochastic Environmental Research and Risk Assessment, Online First, 17 Dec 2014

DOI: 10.1007/s00477-014-0992-2 http://dx.doi.org/10.1007/s00477-014-0992-2

University of Eastern Finland

Related Temperature Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

A drop in temperature
In the nearly two centuries since German physician Carl Wunderlich established 98.6°F as the standard ''normal'' body temperature, it has been used by parents and doctors alike as the measure by which fevers -- and often the severity of illness -- have been assessed.

Kitchen temperature supercurrents from stacked 2D materials
A 'stack' of 2D materials could allow for supercurrents at ground-breakingly warm temperatures, easily achievable in the household kitchen.

Get diamonds, take temperature
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers.

Chemical thermometers take temperature to the nanometric scale
Scientists from the Coordination Chemistry Laboratory and Laboratory for Analysis and Architecture of Systems, both of the CNRS, recently developed molecular films that can measure the operating temperature of electronic components on a nanometric scale.

How reliable are the reconstructions and models for past temperature changes?
Understanding of climate changes during the past millennia is crucial for the scientific attribution of the current warming and the accurate prediction of the future climate change.

New method measures temperature within 3D objects
University of Wisconsin-Madison engineers have made it possible to remotely determine the temperature beneath the surface of certain materials using a new technique they call depth thermography.

Who takes the temperature in our cells?
The conditions in the environment are subject to large fluctuations.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.

Read More: Temperature News and Temperature Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.