A metabolic pathway in cyanobacteria could yield better biofuels and bioproducts from photosynthesis

December 22, 2015

Scientists from the Energy Department's National Renewable Energy Laboratory (NREL) have discovered that a metabolic pathway previously only suggested to be functional in photosynthetic organisms is actually a major pathway and can enable efficient conversion of carbon dioxide to organic compounds.

The discovery shines new light on the complex metabolic network for carbon utilization in cyanobacteria, while opening the door to better ways of producing chemicals from carbon dioxide or plant biomass, rather than deriving them from petroleum.

The discovery was led by NREL senior scientist Jianping Yu and Wei Xiong, an NREL Director's Postdoc Fellow. The findings were published in the online edition of Nature Plants.

The latest NREL discovery followed on the heels of recent work involving cyanobacteria, commonly known as blue-green algae. NREL scientists engineered a cyanobacterium, Synechocystis, that is unable to store carbon as glycogen into a strain that could metabolize xylose (a main sugar component of cellulosic biomass), thus turning xylose and carbon dioxide into pyruvate and 2-oxoglutarate, organic chemicals that can be used to produce a variety of bio-based chemicals and biofuels. While testing this mutant strain under multiple growth conditions, the scientists discovered, unexpectedly, that it excreted large amounts of acetic acid.

"It was a big surprise," said Yu.

Acetic acid is a chemical produced in high volumes for a wide variety of purposes. The chemical industry produces more than 12 million tons per year of acetic acid, primarily from methanol, which in turn is mainly produced from natural gas. The potential to produce acetic acid from photosynthesis could reduce the nation's reliance on natural gas.

While the potential applications are promising, the researchers were mainly intrigued that they couldn't explain the production of acetic acid from known pathways. Traditional pathways involving pyruvate dehydrogenase didn't quite fit the facts. They knew that an enzyme called phosphoketolase could be involved, as it had previously been suggested to be active in cyanobacteria.

That's when the real detective work began. Starting from a previously studied phosphoketolase, the researchers were able to identify the gene slr0453 as the likely source of the phosphoketolase in Synechocystis. The researchers were zeroing in on their quarry.

The next step in the detective work was to disable the gene and see what happened. Disabling it in both the wild and mutant strains of Synechocystis slowed the growth in sunlight-that is, conditions dependent only on CO2 assimilation by photosynthesis-demonstrating that the gene played a role in photosynthetic carbon metabolism. The strains with the disabled gene did not excrete acetic acid in the light in the presence of xylose.

The clincher was that Synechocystis was able to produce acetic acid in the dark when fed with sugars, but the strains with the disabled gene could not. The researchers found that the phosphoketolase pathway was solely responsible for the production of acetic acid in the dark and also contributed significantly to carbon metabolism in the light when xylose was supplied.

"From a basic science point of view, this is a major pathway that has a potentially important function in regulating photosynthetic energy conversion," said Yu. "We didn't start with the hypothesis that there was an additional pathway actively involved in carbon metabolism; we just followed our own findings and made this discovery."

Xiong then quantified the contribution of the newly discovered pathway by using carbon isotopes to track how xylose and carbon dioxide were converted into other organic chemicals. The results showed that the phosphoketolase pathway actually carried a significant proportion of central carbon metabolism.

"It turns out that the phosphoketolase pathway is a major pathway under our experimental conditions," said Yu. "And because it avoids the carbon loss associated with traditional pathways, a wide variety of bioproducts and biofuels can be made more efficiently using this pathway."

"There are two aspects that are important in this discovery," Yu said. "One is that it is an important native metabolic pathway in the cyanobacterium whose role was not studied previously. Second is that this pathway is more efficient than the traditional pathways, so it can be exploited to increase photosynthetic productivity."
-end-
This work was supported by the U.S. Department of Energy's (DOE) Office of Science. It was also supported in part by DOE's Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office. Previous foundational research and development supported by EERE's Fuel Cell Technologies Office was instrumental in enabling these achievements.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Visit NREL online at http://www.nrel.gov

DOE/National Renewable Energy Laboratory

Related Acetic Acid Articles from Brightsurf:

Model for acid-tolerant yeast helps guide industrial organic acid production
Microbes and other microscopic organisms could serve as sustainable ''factories'' to create many types of industrial materials because they naturally convert nutrients such as sugars into byproducts.

Ants swallow their own acid to protect themselves from germs
Ants use their own acid to disinfect themselves and their stomachs.

Hydrochloric acid boosts catalyst activity
A research team from the Technical University of Munich (TUM) led by chemist Johannes Lercher has developed a synthesis process which drastically increases the activity of catalysts for the desulfurization of crude oil.

Control of the fatty acid synthase
Max Planck researchers discover first protein that regulates fatty acid synthase

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Acid reflux affects nearly a third of US adults weekly
Gastroesophageal reflux disease (GERD), a digestive disorder that causes hearburn and other uncomfortable symptoms, may affect nearly a third of US adults each week, and most of those who take certain popular medications for it still have symptoms, according to a new Cedars-Sinai study.

How plants synthesize salicylic acid
The pain-relieving effect of salicylic acid has been known for thousands of years.

Does weight loss surgery help relieve acid reflux?
Individuals who are obese often experience heartburn and other symptoms of acid reflux.

Nitric acid and ammonia electrosynthesis
The commercial synthesis methods for HNO3 and NH3 chemicals is Ostwald and Haber-Bosch process, respectively, but both of them are energy-intensive and high-emission.

Read More: Acetic Acid News and Acetic Acid Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.