NREL research advances hydrogen production efforts

December 22, 2015

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen.

NREL's scientists took a different approach to the PEC process, which uses solar energy to split water into hydrogen and oxygen. The process requires special semiconductors, the PEC materials and catalysts to split the water. Previous work used precious metals such as platinum, ruthenium and iridium as catalysts attached to the semiconductors. A large-scale commercial effort using those precious metals wouldn't be cost-effective, however.

The use of cheaper molecular catalysts instead of precious metals has been proposed, but these have encountered issues with stability, and were found to have a lifespan shorter than the metal-based catalysts.

Instead, the NREL researchers decided to examine molecular catalysts outside of the liquid solution they are normally studied in to see if they could attach the catalyst directly onto the surface of the semiconductor. They were able to put a layer of titanium dioxide (TiO2) on the surface of the semiconductor and bond the molecular catalyst to the TiO2.

Their work showed molecular catalysts can be as highly active as the precious metal-based catalysts.

Their research, "Water Reduction by a p-GaInP2 Photoelectrode Stabilized by an Amorphous TiO2 Coating and a Molecular Cobalt Catalyst," has been published in Nature Materials. Jing Gu and Yong Yan are lead authors of the paper. Contributors James Young, Nathan Neale and John Turner are all with NREL's Chemistry and Nanoscience Center. Contributor K. Xerxes Steirer is with NREL's Materials Science Center.

Turner points out that although the molecular catalysts aren't as stable as the metal-based catalysts, PEC systems are shut down each evening as the sun sets. That leaves time to regenerate a molecular catalyst.

"Hopefully you would not have to do that every day, but it does point to the fact that low stability but highly active catalysts could be viable candidates as a long-term solution to the scalability issue for PEC water splitting systems," Turner said.
-end-
This work was supported by the Department of Energy's Office of Science.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

DOE/National Renewable Energy Laboratory

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.