Scientists discover that salty sea spray affects clouds

December 22, 2015

All over the planet, every day, oceans send plumes of sea spray into the atmosphere. Beyond the poetry of crashing ocean waves, this salt- and carbon-rich spray also has a dramatic effect on cloud formation and duration.

In a new paper published this week in the journal Proceedings of the National Academy of Sciences, Colorado State University atmospheric scientist Paul DeMott finds that sea spray is a unique, underappreciated source of what are called ice nucleating particles. These microscopic bits make their way into clouds and initiate the formation of ice, affecting the clouds' composition.

"The presence of these particles is critically important for precipitation and the lifetime of clouds, and consequently, for their radiative properties," DeMott said.

Added Nick Anderson, program director in the National Science Foundation (NSF) Division of Atmospheric and Geospace Sciences, which funded the research: "The development of clouds and precipitation is a core issue for understanding weather and climate processes. By studying ice nuclei, which can be considered a building block for clouds, these researchers will help piece together the puzzle of how clouds and precipitation form, especially over remote oceanic regions."

Clouds cover 60 percent of the Earth's surface at any given time. With their ability to reflect solar energy and absorb terrestrial radiation, clouds have dramatic effects on climate.

That ability is greatly influenced by the number, size and type of droplets and ice particles they contain. These cloud particles come from aerosols -- particles suspended in air -- from land and ocean surfaces.

From desert dust to fossil fuels, aerosols that affect clouds are everywhere.

The study has confirmed that ice nucleating particles from oceans are distinct -- both in their abundance and ice-making properties -- from land-sourced particles. Hence, their influence on the liquid-to-ice phase structure of clouds, and the clouds' radiative characteristics, can differ over vast swaths of Earth.

The laboratory portion of the study was conducted with other researchers at the NSF-supported Center for Aerosol Impacts on Climate and the Environment (CAICE), at which DeMott is a senior scientist.

Based at the University of California-San Diego, CAICE has laboratory wave flumes that simulate how ocean waves send sea spray aerosols into the air.

Researchers can study the biological and chemical makeup of these particles, as well as the transformations they undergo, and use special instruments to see how they influence cloud formation. DeMott and colleagues compared these data to other measurements made over oceans.

The study offers one explanation for why global climate models have consistently underestimated reflected, short-wave solar radiation in regions dominated by oceans, particularly in the southern hemisphere.

"Our paper gives a clearer picture of the behavior of major classes of atmospheric aerosols in clouds," DeMott said.
-end-


National Science Foundation

Related Aerosols Articles from Brightsurf:

Reducing aerosol pollution without cutting carbon dioxide could make the planet hotter
Humans must reduce carbon dioxide and aerosol pollution simultaneously to avoid weakening the ocean's ability to keep the planet cool, new UC Riverside research shows.

NASA's Terra highlights aerosols from western fires in danger zone
The year 2020 will be remembered for being a very trying year and western wildfires have just added to the year's woes.

NOAA-NASA Suomi NPP captures fires and aerosols across America
On Sep. 07, 2020, NOAA/NASA's Suomi NPP satellite provided two different views of how fires are affecting the US.

Low humidity increases COVID risk; another reason to wear a mask
University of Sydney study confirms a link between COVID-19 cases and lower humidity.

Summer observation campaigns to study pollution in the Asian tropopause layer
Scientists find the aerosols in the boundary layer are mostly pollution out of human activities, and the aerosols in the upper troposphere may also contain natural aerosols, like mineral dust and volcanic sulfate aerosols,

Masks reduce airborne transmission of SARS-CoV-2
Growing evidence suggests that SARS-CoV-2, the novel coronavirus that causes COVID-19, can be spread by asymptomatic people via aerosols -- a reality that deeply underscores the ongoing importance of regular widespread testing, wearing masks and physical distancing to reduce the spread of the virus, say Kimberly Prather and colleagues in a new Perspective.

Fire aerosols decrease global terrestrial ecosystem productivity through changing climate
Cooling, drying, and light attenuation are major impacts of fire aerosols on the global terrestrial ecosystem productivity.

Study: Aerosols have an outsized impact on extreme weather
A reduction in manmade aerosols in Europe has been tied to a reduction in extreme winter weather in the region.

Agricultural area residents in danger of inhaling toxic aerosols
Excess selenium from fertilizers and other natural sources can create air pollution that could lead to lung cancer, asthma, and Type 2 diabetes, according to new UC Riverside research.

Satellite tracking shows how ships affect clouds and climate
By matching the movement of ships to the changes in clouds caused by their emissions, researchers have shown how strongly the two are connected.

Read More: Aerosols News and Aerosols Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.