Mouse models indicate burning more fat and less glucose could lead to diabetes

December 22, 2016

Making muscles burn more fat and less glucose can increase exercise endurance, but could simultaneously cause diabetes, says a team of scientists from Baylor College of Medicine and other institutions.

Mouse muscles use glucose (carbohydrate) as fuel when the animals are awake and active and switch to fat (lipid) when they are asleep. The team discovered that disrupting this natural cycle may lead to diabetes but, surprisingly, also can enhance exercise endurance. The switch is controlled by a molecule called histone deacetylase 3, or HDAC3. This finding opens the possibility of selecting the right time to exercise for losing body fat but also raises the concern of using HDAC inhibitors as doping drugs for endurance exercise. The study appears in Nature Medicine.

"How the muscle uses glucose is regulated by its internal circadian clock that anticipates the level of its activity during the day and at night," said senior author Dr. Zheng Sun, assistant professor of medicine - diabetes, endocrinology and metabolism, and of molecular and cellular biology at Baylor. "The circadian clock works by turning certain genes on and off as the 24-hour cycle progresses. HDAC3 is a key connection between the circadian clock and gene expression. Our previous work showed that HDAC3 helps the liver alternate between producing glucose and producing lipid. In this work, we studied how HDAC3 controls the use of different fuels in skeletal muscle."

Skeletal muscles, the voluntary muscles, are important in the control of blood glucose in the body. They consume most of the glucose, and if they develop insulin resistance and consequently are not able to use glucose, then diabetes likely will develop. To study the role of HDAC3 in mouse skeletal muscle, Sun and colleagues genetically engineered laboratory mice to deplete HDAC3 only in the skeletal muscles. Then they compared these knocked out mice with normal mice regarding how their muscles burn fuel.

Unexpected results

When normal mice eat, their blood sugar increases and insulin is released, which stimulates muscles to take in and use glucose as fuel. "When the knocked out mice ate, their blood sugar increased and insulin was released just fine, but their muscles refused to take in and use glucose," said Sun. "Lacking HDAC3 made the mice insulin resistant and more prone to develop diabetes."

Yet, when the HDAC3-knocked out mice ran on a treadmill, they showed superior endurance, "which was intriguing because diabetes is usually associated with poor muscle performance," said Sun. "Glucose is the main fuel of muscle, so if a condition limits the use of glucose, the expectation is low performance in endurance exercises. That's the surprise."

The researchers then studied what fueled the HDAC3-knocked out mice's stellar performance using metabolomics approaches and found that their muscles break down more amino acids. This changed the muscles' preference from glucose to lipids and allowed them to burn lipid very efficiently. This explains the high endurance, because the body carries a much larger energy reservoir in the form of lipid than carbohydrate.

The finding challenges the widely-used carbohydrate-loading (carbo-loading) strategy for improving endurance performance. "Carbo-loading didn't make evolutionary sense before the invention of agriculture," said Sun. "Switching muscles from using carbohydrates to lipids could increase exercise endurance, especially for low-intensity exercise." The study suggests that HDAC inhibitors, a class of small molecule drugs currently being tested for treating several diseases, could potentially be used to manipulate such fuel switch in muscle and therefore raises concern of doping.

Link to the body's internal clock

The team performed a number of functional genomics studies that established the link between HDAC3 and the circadian clock. "In normal mice, when the mouse is awake, the clock in the muscle anticipates a feeding cycle and uses HDAC3 to turn off many metabolic genes. This leads the muscles to use more carbohydrate," said Sun. "When the animal is about to go to sleep and anticipates a fasting cycle, the clock removes HDAC3. This leads the muscles to use more lipid."

Although these studies were done in mice, the researchers speculate that human muscles most likely will follow the same cycle. The study opens the possibility of promoting body fat burning by increasing exercise activity during the periods in which muscles use lipid, which is at night for people. "Losing body fat would be easier by exercising lightly and fasting at night," said Sun. "It's not a bad idea to take a walk after dinner."
-end-
Other contributors to this work include Sungguan Hong, Wenjun Zhou, Bin Fang, Wenyun Lu, Emanuele Loro, Manashree Damle, Guolian Ding, Jennifer Jager, Sisi Zhang, Yuxiang Zhang, Dan Feng, Qingwei Chu, Brian D Dill, Henrik Molina, Tejvir S Khurana, Joshua D Rabinowitz and Mitchell A Lazar. The authors are affiliated with one or more of the following institutions: Baylor College of Medicine, University of Pennsylvania, Princeton University, Shanghai Jiao Tong University and Rockefeller University.

Financial support was provided by the National Institutes of Health grants DK043806 and DK099443. The study was also supported by multiple core facilities including the Penn Diabetes Center (DK19525) Functional Genomics Core and Mouse Metabolic Phenotyping Core, Rockefeller University Proteomics Center, Princeton/Penn Regional Metabolomics Core, Vanderbilt MMPC (DK59637) and the Baylor Diabetes Center (DK079638) Mouse Metabolism Core.

Baylor College of Medicine

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.