Nav: Home

Proteins at the movies

December 22, 2016

Proteins twist and contort as they go about their work. And now scientists have found a way to film these nuanced movements, as reported 23 December in the journal Science.

In research conducted at SACLA, Japan's XFEL (X-ray free electron laser) facility, membrane protein folding has been captured for the first time in 3D and at a single-atom level.

Membrane proteins are popular drug targets, as they are exposed to the environment surrounding the cell. Capturing their movements in video, the authors say, is potentially a revolutionary step forward in drug development.

Lead author Eriko Nango of Kyoto University explains that, whereas conventional X-ray crystallography only captures static protein structures, SACLA has enabled the team to observe minute changes in protein structures during transformation.

"With XFEL, we can get diffraction images of protein structures using crystals that are merely a few micrometers in size. SACLA's laser pulses are extremely short, lasting less than 10 femtoseconds, exposing the protein crystals to minimal radiation damage," says Nango.

The technique enabled the team to observe proteins before deformation from radiation, and also take 'snapshots' in time increments shorter than previously possible, later assembling these into time-lapse movies.

Nango elaborates, "It's like being able to add extra pages to a flip book animation, so that you don't lose track of very fine, detailed movements."

In the study, the team observed bacteriorhodopsin, a membrane protein of microorganisms that live in hyper-salty conditions.

"Bacteriorhodopsin releases hydrogen ions -- essentially protons -- outside the cell in response to light," says corresponding author So Iwata of Kyoto University. "The movement of these protons is always one-way. How it's pumped out of the cell, but not back in, has puzzled scientists for fifty years."

The team designed a device to shine lasers in the range of visible light, in order to capture bacteriorhodopsin's reactions immediately after light exposure.

In 13 images taken between one nanosecond and one millisecond after irradiation, the researchers found that bacteriorhodopsin goes through four transformations before returning to its default form. As the protein reshapes, amino acid residues in its vicinity move toward the inside of the cell, being replaced by water molecules that pass protons to amino acid residues in the cell's exterior.

"Membrane transport proteins are everywhere in biology," continues Iwata. "This new experimental method is a game-changer for research in the life sciences, because we can now investigate protein structures, including their motion, in much greater detail."
The paper "A three dimensional movie of structural changes in bacteriorhodopsin" appeared 23 December 2016 in Science.

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see:

Kyoto University

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...