Nav: Home

Existence of a short-lived tetraneutron predicted

December 22, 2016

A member of the Lomonosov Moscow State University together with his colleagues, using new interaction between neutrons, have theoretically justified the low-energy tertaneutron resonance obtained recently experimentally. This proves the existence for a very short period of time of a particle consisting of four neutrons. According to the supercomputer simulations, the tetraneutron lifetime is 5×10-22 sec. The research results are published in a top-ranked journal Physical Review Letters.

A team, consisting of Russian, German and American scientists, and among them Andrey Shirokov, Senior Researcher at the Skobeltsyn Institute of Nuclear Physics, has calculated the energy of the resonant tetraneutron state. Their theoretical computations, based on a new approach and new interaction between neutrons, correlate with the results of the experiment in which the tetraneutron has been produced.

Searching for neutron stability

A neutron lives about 15 min before it decays producing a proton, electron and antineutrino. There is also another known stable system consisting of a huge number of neutrons - a neutron star. Scientists have aimed to find out whether there are other systems, even short-lived, composed purely of neutrons.

A system made up of two neutrons doesn't form even a short-lived state. Due to multi-year experimental and fundamental researches, scientists conclude that there are no such states in a system made up of three neutrons. Searches for a tetraneutron, a cluster of four neutrons, have been conducted for more than 50 years. These searches were fruitless until 2002 when a group of French researchers in an experiment at the Large Heavy Ion National Accelerator (Grand accélérateur national d'ions lourds - GANIL) in Caen has found 6 events which could be interpreted as the tetraneutron production. However, the reproduction of this experiment failed, and some scientists suppose that at least a part of the original data analysis was incorrect.

A new phase of the tetraneutron searches takes place at the Radioactive Ion Beam Factoryin the RIKEN Institute, Japan, where a high-quality beam of 8He nuclei is available. The 8He nucleus consists of an α-particle (the 4He nuclei) and four neutrons. A few research teams from different countries have proposed the tetraneutron searches in RIKEN. In the first of these experimental searches, the 8He nuclei were bombarding the 4He target. As a result of the collision, the α-particle was knocked out from 8He leaving the system of 4 neutrons. Four events interpreted as the short-lived tetraneutron resonant statehave been detected. This experiment of the Japanese group has been published at the beginning of this year, and it will be continued.

How long could a tetraneutron live?

The scientist from Lomonosov Moscow State University and his collaborators have published in their article theoretical evaluations of the tetraneutron resonant state energy and its lifetime. They have contributed to the preparation of one of the proposed experimental searches for the tetraneutron when a group of experimentalists from Germany asked for the assistance.

Andrey Shirokov, the first author of the article, says: "Such evaluations were made by us in different models, and the obtained results were used to support the experiment application. Afterwards, we thoroughly elaborated thetheoretical approach and performed numerous simulations on supercomputers. The results have been published in our paper in Physical Review Letters".

The theoretical results for the energy of tetraneutron resonance of 0.84 MeV correlate well with the Japanese experimental findingof 0.83 MeV which is however characterized by a large uncertainty (about ±2 MeV). The calculated width of the resonant tetraneutron state is 1.4 MeV which corresponds to the lifetime of about 5×10-22 sec.

Andey Shirokov continues: "It's worth noting that none of theoretical papers up to now has predicted the existence of the resonant tetraneutron state at such low energies of about 1 MeV".

The new theoretical result probably stems from a new theoretical approach to the studies of resonant states in nuclear systems developed by the scientists. This approach has been carefully tested on model problems and in less complicated systems and only afterwards applied to the tetraneutron studies accounting for the specifics of the four-particle decay of this system.

Andrey Shirokov however indicates an alternative possibility: "Another possible reason is the fact that we've used a new interaction between neutrons elaborated by our team. Our tetraneutron studies will be continued, we'll perform simulations with other more traditional interactions. At the same time, our French colleagues are going to study thetetraneutron with our interaction within their approach. Of course, all of us are looking forward for the results of new experimental tetraneutron searches".
The research has been conducted by a large international team of theorists with Russia been represented by scientists not only from the Lomonosov Moscow State University, but also from the Pacific National University (Khabarovsk). This team includes also collaborators from USA and Germany. Researchers from South Korea are joining the group for future studies. The Russian side has been at the forefront of this research leading the elaboration of the theoretical approach to the resonant states and the design of the new interaction between particles in atomic nuclei.

Lomonosov Moscow State University

Related Neutrons Articles:

Researchers overcome the space between protons and neutrons to study heart of matter
Nuclear physicists have entered a new era for probing the strongest force in the universe at its very heart with a novel method of accessing the space between protons and neutrons in dense environments.
New neutron detector can fit in your pocket
Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors.
Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis
Researchers led by the University of Manchester used neutron scattering at Oak Ridge National Laboratory in the development of a catalyst that converts biomass into liquid fuel with remarkably high efficiency and provides new possibilities for manufacturing renewable energy-related materials.
Scientist confirm a new 'magic number' for neutrons
An international collaboration led by scientists from the University of Hong Kong, RIKEN (Japan), and CEA (France) have used the RI Beam Factory (RIBF) at the RIKEN Nishina Center for Accelerator-base Science to show that 34 is a ''magic number'' for neutrons, meaning that atomic nuclei with 34 neutrons are more stable than would normally be expected.
Students make neutrons dance beneath UC Berkeley campus
Nuclear reactors are still the primary source for strong neutron beams to create isotopes for geologic dating, radiography and medicine, but researchers at UC Berkeley have enlisted engineering students in building a tabletop neutron source that could be nearly as effective.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Nuclear 'magic numbers' collapse beyond the doubly magic nickel 78
Scientists have demonstrated that nickel 78, a neutron-rich 'doubly magic' isotope of nickel with 28 protons and 50 neutrons, still maintains a spherical shape that allows it to be relatively stable despite the large imbalance in the number of protons and neutrons.
Through thick and thin: Neutrons track lithium ions in battery electrodes
Lithium-ion batteries are expected to have a global market value of $47 billion by 2023, but their use in heavy-duty applications such as electric vehicles is limited due to factors such as lengthy charge and discharge cycles.
'Featherweight oxygen' discovery opens window on nuclear symmetry
Researchers at Washington University in St. Louis have discovered and characterized a new form of oxygen dubbed 'featherweight oxygen' -- the lightest-ever version of the familiar chemical element oxygen, with only three neutrons to its eight protons.
Neutrons paint atomic portrait of prototypical cell signaling enzyme
Direct observations of the structure and catalytic mechanism of a prototypical kinase enzyme -- protein kinase A or PKA -- will provide researchers and drug developers with significantly enhanced abilities to understand and treat fatal diseases and neurological disorders such as cancer, diabetes, and cystic fibrosis.
More Neutrons News and Neutrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at