Nav: Home

Oregon researchers publish reference genome of gulf pipefish

December 22, 2016

EUGENE, Ore. -- Dec. 22, 2016 -- University of Oregon biologists have produced a detailed genome of the snakelike gulf pipefish, delivering a new research reference tool to help explore an ancient fish family that includes seahorses and sea dragons and has generated bodies with vastly different features over time through genetic changes.

Comparing the genome with other vertebrate organisms may help scientists learn about basic aspects of human biology, such as how skulls develop and change shape and how the genome that people mostly share with other vertebrates can be tweaked to create new structures, said Susan Bassham, a senior research associate in the lab of UO biologist William Cresko where the research was done.

While such research connected to human features is an added benefit, a more immediate payoff is that the methods used during the project are laid out so that other small labs can use them as a reference for creating genomes of organisms they are interested in studying.

A paper detailing the genome was published Dec. 20 by the journal Genome Biology. The gulf pipefish -- abundant in seagrass beds of the Gulf of Mexico -- has the species name of Syngnathus scovelli. It belongs to the family known as Syngnathidae, which dates back at least 50 million years.

"This group of species has novelties that are not well understood from an evolutionary genetic standpoint," said Clay Small, one of the paper's lead authors and a postdoctoral fellow in Cresko's lab in the Institute of Ecology and Evolution. "The family Syngnathidae is a very good model clade for studying these derived structural features because they are so weird looking in terms of their unique body plans. Ultimately, we are interested in identifying genetic changes that are related to the evolution of these novel features in this whole family."

Species in the Syngnathid family have long snouts, which help their suction-like feeding behavior. They have bony body armor. They lack pelvic fins, ribs and teeth and have evolved unique placenta-like structures in males for the brooding of developing offspring.

The publication of the gulf pipefish genome came less than a week after the genome of another family member, the tiger tail seahorse, was announced in the journal Nature.

"Having this pair of papers published almost simultaneously moved genomic analyses of this remarkable group of fish ahead tremendously," said Cresko, a professor of biology.

The two genomes show that losses and changes in specific genes or gene functions may be responsible for evolutionary innovations, Small said. Through evolution, the pipefish and seahorse genomes have lost genetic elements compared to distant fish ancestors. These likely explain some changes in body alignment and the loss of pelvic fins, which correspond to legs in the human vertebrate lineage, he said.

A big part of Small's efforts focused on the ability of male pipefish to gestate embryos in their brood pouch. The gulf pipefish, Bassham said, provides an example of one of the most elaborated placental structures found in the males of various pipefish species.

Some 1,000 genes are expressed differently in the pouch during a male's pregnancy to control developmental processes, nutrient exchange, stability and immunity, the researchers reported.

In a comparative analysis between pregnant and non-pregnant male pipefish, Small found a family of genes that behaved unusually. This gene family, patristacins, contains some members that turn on during pregnancy, and others that are suppressed during pregnancy. The group of genes is likely unique to syngnathid fishes, and they behave similarly in seahorses.

The UO-led team also found that gulf pipefish have two chromosomes fewer than most ray-finned fish. "By looking at the patterns of where genes lie in the genome, it's very likely this difference resulted simply from the fusion of four of the ancestral chromosomes into two," Bassham said. "Most fish have 24 chromosomes, but the gulf pipefish has 22."

The researchers used a genome-sequencer in the UO's Genomics Core Facility, along with a genetics technology developed at the UO called restriction-site associated DNA markers, now known as RAD-sequencing. It allows researchers to sort data and then organize it all back together into a detailed genetic map.

The team also used three software packages developed by co-author Julian Catchen, a former UO postdoctoral researcher now at the University of Illinois at Urbana-Champaign. The software was designed to complement RAD-sequencing and genome assembly data.

Using fish genomes, Bassham said, should allow research groups to ask a lot of different biological questions. "Fish are vertebrates. We are vertebrates," she said. "We share large swaths of our biology with these fish. We'd like to understand how evolution occurs, and some of the most exciting aspects of evolution happen when novel features appear in an evolutionary lineage.

"Novelties can happen multiple ways," Bassham said. "Sometimes it involves a loss of a structure that creates a new way of life. In other cases, it might be an evolution of a new body part that wasn't there before. Where did that tissue come from? How did it come into being? What was modified to make it? Or what developmental gene pathways were changed to allow for it?"
-end-
Other co-authors with Bassham, Catchen, Cresko and Small were Angel Amores, research associate in the UO Institute of Neuroscience; Allison Fuiten, graduate student in Cresko's lab; former UO student R.S. Brown, who now is at Oregon Health and Science University; and Adam G. Jones of Texas A&M University.

The National Institutes of Health and National Science Foundation supported the research.

A more-detailed look at the science unveiled by the gulf pipefish genome paper can be seen in a blog posted by the BioMed Central.

Sources: Susan Bassham, research associate, Institute of Ecology and Evolution, 541-346-5189, sbassham@uoregon.edu; Clay Small, postdoctoral researcher, Institute of Ecology and Evolution, 541-346-4232, csmall@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Cresko lab: http://creskolab.uoregon.edu/

Institute of Ecology and Evolution: http://ie2.uoregon.edu/

Seahorse genome paper: http://www.nature.com/nature/journal/v540/n7633/full/nature20595.html

BioMed Central blog: http://blogs.biomedcentral.com/on-biology/2016/12/20/pipefishgenome/

University of Oregon

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...