Review on functional hydrogel coatings

December 22, 2020

Life originates from water. Hydrogels--hydrophilic polymer network swelling in water--resembles the original form of life, the algae and bacterium. In the modern life, hydrogels are ubiquitous in nature, from muscle and cartilage in animal tissues to xylems and phloems in plants. The intrinsic biocompatibility of hydrogels makes them prevailing in medical applications, such as wound dressing, drug delivery, and tissue scaffold.

In recent years, the diversity of synthetic hydrogels in topology and chemical composition of polymer network makes them highly adaptive to a vast array of functions and applications, such as stimuli responsive hydrogels by temperature, electrical field, and pH, lubricious hydrogels, anti-fouling hydrogels, and tough hydrogels. The synthetic hydrogels play an irreplaceable role in smart soft devices and soft robotics. Thanks to the achievement of strong bonding of hydrogels on various substrates, the applications of hydrogels have been further extended by functional hydrogel coatings. Through functional hydrogel coatings, one can integrate the functions of hydrogels or generates new applications by this combination without influence on the mechanical properties of the target substrates, such as stiffness, toughness, and strength. Functional hydrogel coating is one of the research hotspots of hydrogels.

Recently, Junjie Liu, Shaoxing Qu, and Wei Yang from Zhejiang University and Zhigang Suo from Harvard University reviewed the emerging topic of functional hydrogel coatings from three aspects: functions and applications of hydrogel coatings, methods of preparing hydrogel coatings with strong adhesion, and tests to evaluate the adhesion. This review, entitled "Functional hydrogel coatings", was published in the National Science Review.

Firstly, the main functions and applications of functional hydrogel coatings in both medical and non-medical areas are presented. In non-medical area, typical applications include sensing, actuation, anti-marine creatures fouling and oil-water separation. While hydrogel coatings are used for drug delivery, lubrication, anti-biofouling and conductivity for neural electrodes in medical area.

This review pointed out that a well-established hydrogel coating method should be able to coat target substrates with arbitrary shape, achieve strong bonding between hydrogel coating and substrate, and be compatible with various hydrogels and substrates. The existing hydrogel coating methods that satisfy these requirements include the surface bridge method, the surface initiation method, and the hydrogel paint method, as illustrated in Figure 1.

Adhesion between the hydrogel coating and substrate, which is the energy required to peel away a unit area of hydrogel coating and has units of J/m2, quantifies the resistance to debonding of the coating. Tests for adhesion of hydrogel coatings include the peel test, the simple stretch test, the scratch test, the probe pull test, and the double cantilever beam test. These test methods are schematically illustrated in Figure 2. Among these, the peel test is the most frequently used one.

Finally, the authors proposed several research directions of the functional hydrogel coatings:
See the article:

Junjie Liu, Shaoxing Qu, Zhigang Suo, and Wei Yang Functional Hydrogel Coatings Natl Sci Rev nwaa254

Science China Press

Related Drug Delivery Articles from Brightsurf:

Modelling microswimmers for drug delivery
An international group of theoretical physicists led by Abdallah Daddi-Moussa-Ider from D├╝sseldorf, Germany, has modelled the motion of microscopic, motile bodies - either powered micro-machines or living cells - in viscous liquid drops, using the Navier-Stokes equations.

Millimetre-precision drug delivery to the brain
Focused ultrasound waves help ETH researchers to deliver drugs to the brain with pinpoint accuracy, in other words only to where their effect is desired.

New smart drug delivery system may help treatment for neurological disorders
A Rutgers-led team has created a smart drug delivery system that reduces inflammation in damaged nervous tissues and may help treat spinal cord injuries and other neurological disorders.

Novel drug delivery particles use neurotransmitters as a 'passport' into the brain
Drug-carrying lipid nanoparticles were created that incorporate neurotranmitters to help them cross the blood-brain barrier in mice.

Advances in nanoparticles as anticancer drug delivery vector: Need of this century
This review article provides a summary of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors.

Microcapsules for targeted drug delivery to cancer cells
A team of scientists from Peter the Great St. Petersburg Polytechnic University together with their colleagues developed a method of targeted drug delivery to cancer cells.

Improving drug delivery for brain tumor treatment
Despite improvements in drug delivery mechanisms, treating brain tumors has remained challenging.

Nanoparticle orientation offers a way to enhance drug delivery
MIT engineers have shown that they can enhance the performance of drug-delivery nanoparticles by controlling an inherent trait of chemical structures, known as chirality -- the 'handedness' of the structure.

News about drug delivery
Nanocontainer for drugs can have their pitfalls: If they are too heavily loaded, they will only dissolve poorly.

Deflating beach balls and drug delivery
Gwennou Coupier and his colleagues at Grenoble Alps University, Grenoble, France have shown that macroscopic-level models of the properties of microscopic hollow spheres agree very well with theoretical predictions.

Read More: Drug Delivery News and Drug Delivery Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to