Scientists pinpoint molecular cause for severe disorder in children

December 22, 2020

Damien D'Amours and his team at the Ottawa Institute of Systems Biology needed three years to discover the molecular defects associated with the LIC Syndrome, a serious genetic disorder that affects young children and result in acute respiratory distress, immune deficiency and abnormal chromosomes.

Onset of symptoms occurs in the first few months after birth in infants suffering from Lung disease Immunodeficiency and Chromosome breakage (LIC). Typically, patients experience failure to thrive and immune deficiency, which can eventually progress to fatal pediatric pulmonary disease in early childhood. The disease is caused by small inactivating mutations in NSMCE3, a gene encoding an essential factor found in the nucleus of human cells.

This research represents one of the most important milestones in developing treatments to improve the lives of LIC syndrome patients. Damien D'Amours is a Full Professor in the Department of Cellular & Molecular Medicine of the Faculty of Medicine whose lab is focused understanding the mechanisms used by cells to promote efficient cell division and proliferation. He provided further insights into the study's findings.

What exactly have you discovered?

"We discovered how defects in a "DNA compaction machine" within our cells can cause a rare genetic disorder that kills young children (i.e., the LIC syndrome). We found the molecular cause by using an exciting mix of biophysics, advanced genetics and classical biochemistry to demonstrate that an enzyme has the rare ability to compact DNA within our cells."

How did you do it?

"We developed a completely novel system to purify a human enzyme that nobody in the world has ever successfully purified - the "Smc5/6 complex." The Smc5/6 complex is a crucial effector of chromosome integrity, and our breakthrough allowed us to reveal the structure of the enzyme and its powerful ability to compact DNA structure in space. We then modelled the mutations causing the LIC syndrome in our system and showed that the mutations affect ability of the Smc5/6 complex to repair chromosomes in cells, thus explaining how LIC mutations affect the ability of cells to maintain healthy genomes."

You used the "systems biology" approach to reach your conclusions; please explain this.

"The advent of systems biology has revolutionized biomedical research in recent years. This approach relies on the use of integrative "omics" technologies and model organisms to provide a systems-level understanding of human diseases. (Omics is a general term to describe "large-scale genomics, proteomics, and metabolomics technologies.") The University of Ottawa has been at the forefront of this revolution in research with the creation of the Ottawa Institute of Systems Biology (OISB). We took advantage of the systems biology approach to develop completely new systems to purify an enzyme never purified before. Then we used innovative mix of biophysics, proteomics and classical biochemistry to reveal the mode of action of the Smc5/6 complex and how mutations in this complex can cause severe defects in DNA repair."

Why is this an important find?

"My research team and our collaborators are performing research at the absolute cutting-edge of our field and, as the leading laboratory on this project, we feel our research represents one of the most important milestones on the way to devise treatments for LIC syndrome patients. Prior to our work, nobody knew the biochemical cause for the LIC syndrome and how the enzyme mutated in this disease might affect the cells of patients/children; we provided answers to these fundamental questions."
-end-


University of Ottawa

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.