The brain's protein factories at work

December 22, 2020

Protein synthesis is a finely tuned process in the cell by macromolecules known as ribosomes. Which regulators are responsible for controlling protein synthesis in the brain, and how do they exert their control on the ribosome? To address this question, a team of researchers from Charité - Universitätsmedizin Berlin studied the structure of the brain's ribosomal complexes in great detail. The team was able to identify a new factor which is also involved in controlling brain development. Details of this research have been published in Molecular Cell*.

Proteostasis refers to maintaining a delicate balance of protein levels in the cell, which is of particularly crucial importance to neurons. Abnormal protein production is a characteristic feature of many brain disorders. High precision protein production is of immense importance during the early development of a complex part of the cerebral cortex known as the neocortex. It is particularly important in the production of membrane proteins, which play an important role in cell-to-cell sites of synaptic contact between nerve cells. As the cell's 'molecular protein factories', ribosomes are at the heart of the regulatory processes involved in proteostasis. A range of molecules can influence ribosome function, and are responsible for controlling the production of specific proteins in different tissues and at different developmental stages. The way in which these various factors interact with the ribosome during development remains widely unknown. However, a group of Charité researchers has successfully observed protein production by ribosomes in the developing brain.

"It is the first time the ribosomal complex has been visualized in action inside the brain at near atomic-level resolution," says Prof. Dr. Christian Spahn, Director of Charité's Institute of Medical Physics and Biophysics. "While the structure of the ribosomal complex has been mapped in other tissues and organisms, our approach enabled us to identify Ebp1 as the new key factor responsible for controlling both ribosome function and the synthesis of specific proteins during brain development." The interaction between the regulatory protein Ebp1 (short for ErbB3 binding protein 1) and the ribosome takes place at the ribosome's exit tunnel, through which the newly formed protein chain emerges from the ribosome. Through this interaction, Ebp1 influences the production of membrane proteins that play an important role in neuronal interactions, thus maintaining neuronal proteostasis.

As part of a multidisciplinary project linking aspects of structural biology and neuroscience, the researchers used cryo-electron microscopy (cryo-EM) as their main investigative tool, combining it with mass spectrometry, RNA sequencing and genetic techniques. The cryo-EM imaging technique enables scientists to determine protein structures - particularly larger complexes comprising multiple molecules - at extremely low temperatures and near-physiological conditions. The study's first author, Dr. Dr. Matthew L. Kraushar (a neuroscientist at the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin and previously a member of Prof. Spahn's laboratory), explains: "We could therefore visualize the molecular architecture of the ribosome at high resolution, as it would be found inside brain cells. We were able to capture snapshots of the ribosome in action."

"Protein production in various types of brain cells is subject to finely tuned control mechanisms. Small changes can lead to big consequences, such as neurodegenerative diseases or disrupted development. Our findings on the role of ribosomes during normal brain development will help us to better understand pathological changes affecting the brain," says Prof. Spahn. As a next step, the researchers are conducting a large-scale study to understand the way ribosomes translate messages from the genetic code (mRNA) into numerous essential proteins throughout brain development.
*Kraushar ML et al. Protein synthesis in the developing neocortex at near-atomic resolution reveals Ebp1-mediated neuronal proteostasis at the 60S tunnel exit. Mol Cell. 2020 Dec 22. doi: 10.1016/j.molcel.2020.11.037

Charité - Universitätsmedizin Berlin

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to