Mouse-controlled mouse helps researchers understand intentional control

December 22, 2020

We know that the brain can direct thoughts, but how this is achieved is difficult to determine. Researchers at the Sainsbury Wellcome Centre have devised a brain machine interface (BMI) that allows mice to learn to guide a cursor using only their brain activity. By monitoring this mouse-controlled mouse moving to a target location to receive a reward, the researchers were able to study how the brain represents intentional control.

The study, published today in Neuron, sheds light on how the brain represents causally-controlled objects. The researchers found that when mice were controlling the cursor, brain activity in the higher visual cortex was goal-directed and contained information about the animal's intention. This research could one day help to improve BMI design.

"Brain machine interfaces are devices that allow a person or animal to control a computer with their mind. In humans, that could be controlling a robotic arm to pick up a cup of water, or moving a cursor on a computer to type a message using the mind. In animals, we are using these devices as models for understanding how to make BMIs better," said the paper's first author, Dr Kelly Clancy, who completed the study at the Sainsbury Wellcome Centre, University College London, following previous work at Biozentrum, University of Basel.

"Right now, BMIs tend to be difficult for humans to use and it takes a long time to learn how to control a robotic arm for example. Once we understand the neural circuits supporting how intentional control is learned, which this work is starting to elucidate, we will hopefully be able to make it easier for people to use BMIs," said co-author of the paper, Professor Tom Mrsic-Flogel, Director of the Sainsbury Wellcome Centre, University College London.

Traditionally it has been difficult to study how causally-controlled objects are represented in the brain. Imagine trying to determine how the brain represents a cursor it is controlling versus a cursor it is passively watching. There are motor signals in the first case but not in the second, so it is difficult to compare the two. With BMIs, the subject doesn't physically move, so a cleaner comparison can be made.

In this study, the researchers used a technique called widefield brain imaging, which allowed them to look at the whole dorsal surface of the cortex while the animal was using the BMI. This technique enabled an unbiased screen of the cortex to locate the areas that were involved in learning to intentionally control the cursor.

Visual cortical areas in mice were found to be involved during the task. These areas included the parietal cortex, an area of the brain implicated in intention in humans.

"Researchers have been studying the parietal cortex in humans for a long time. However, we weren't necessarily expecting this area to pop out in our unbiased screen of the mouse brain. There seems to be something special about parietal cortex as it sits between sensory and motor areas in the brain and may act as a way station between them," added Dr Kelly Clancy.

By delving deeper into how this way station works, the researchers hope to understand more about how control is exerted by the brain. In this study, mice learned to map their brain activity to sensory feedback. This is analogous to how we learn to interact with the world--for example, we adjust how we use a computer mouse depending on its gain setting. Our brains build representations of how objects typically behave, and execute actions accordingly. By understanding more about how such rules are generated and updated in the brain, the researchers hope to be able to improve BMIs.
-end-
This research was supported by the European Research Council, Swiss National Science Foundation, Gatsby Charitable Foundation, Wellcome, EMBO Long-term Fellowship, HFSP Postdoctoral Fellowship, and the Branco Weiss-Society in Science grant.

Source:

Read the full paper in Neuron: '
About the Sainsbury Wellcome Centre

The Sainsbury Wellcome Centre (SWC) brings together world-leading neuroscientists to generate theories about how neural circuits in the brain give rise to the fundamental processes underpinning behaviour, including perception, memory, expectation, decisions, cognition, volition and action. Funded by the Gatsby Charitable Foundation and Wellcome, SWC is located within UCL's School of Life and Medical Sciences and is closely associated with the Faculties of Life Sciences and Brain Sciences. For more information please visit:
http://www.sainsburywellcome.org

MEDIA CONTACT
April Cashin-Garbutt
Head of Research Communications and Engagement,
Sainsbury Wellcome Centre
a.cashin-garbutt@ucl.ac.uk

Sainsbury Wellcome Centre

Related Brain Activity Articles from Brightsurf:

Inhibiting epileptic activity in the brain
A new study shows that a protein -- called DUSP4 -- was increased in healthy brain tissue directly adjacent to epileptic tissue.

What is your attitude towards a humanoid robot? Your brain activity can tell us!
Researchers at IIT-Istituto Italiano di Tecnologia in Italy found that people's bias towards robots, that is, attributing them intentionality or considering them as 'mindless things', can be correlated with distinct brain activity patterns.

Using personal frequency to control brain activity
Individual frequency can be used to specifically influence certain areas of the brain and thus the abilities processed in them - solely by electrical stimulation on the scalp, without any surgical intervention.

Rats' brain activity reveals their alcohol preference
The brain's response to alcohol varies based on individual preferences, according to new research in rats published in eNeuro.

Studies of brain activity aren't as useful as scientists thought
Hundreds of published studies over the last decade have claimed it's possible to predict an individual's patterns of thoughts and feelings by scanning their brain in an MRI machine as they perform some mental tasks.

A child's brain activity reveals their memory ability
A child's unique brain activity reveals how good their memories are, according to research recently published in JNeurosci.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.

Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.

Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.

Read More: Brain Activity News and Brain Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.