SMART-1 uses new imaging technique in lunar orbit

December 23, 2005

ESA's SMART-1 spacecraft has been surveying the Moon's surface in visible and near-infrared light using a new technique, never before tried in lunar orbit.

For the last few months, the Advanced Moon Imaging Experiment (AMIE) on board SMART-1, has been opening new ground by attempting multi-spectral imaging in the 'push-broom' mode. This technique is particularly suited to colour imaging of the lunar surface. (Note that 'colour imaging' here does not mean natural colour, the colour bands of the AMIE filters are in the infrared region and are selected such that the intensity of the iron absorption line can be determined from brightness ratios of the images.)

In this mode, AMIE takes images along a line on the Moon's surface perpendicular to the ground track of the spacecraft.

It relies on the orbital motion of the spacecraft to reposition it as it records a sequence of images known as an 'image swath'.

The AMIE camera on board SMART-1 has fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames.

The images, taken only a few seconds apart, show how the surface is moving through the different filters. The spacecraft is moving over the Moon's surface at a speed of more than a kilometre per second!

By combining images showing the same feature on the Moon as seen through different filters, colour information can be obtained. This allows to study the mineralogical composition on the lunar surface, which in turn lets scientists deduce details of the formation of our celestial companion.

Whereas the multi-spectral camera aboard the US Clementine mission had constant illumination conditions, SMART-1's orbit will offer different viewing angles. AMIE's views correlated with Clementine data of the same lunar areas will allow scientists to better interpret such spectral data.

European Space Agency

Related Lunar Surface Articles from Brightsurf:

Research helps people, lunar rovers, get there on time
Illinois graduate student Pranay Thangeda relies on the bus system in Champaign-Urbana to get to class.

Digging into the far side of the moon: Chang'E-4 probes 40 meters into lunar surface
A little over a year after landing, China's spacecraft Chang'E-4 is continuing to unveil secrets from the far side of the Moon.

One small grain of moon dust, one giant leap for lunar studies
Scientists have found a new way to analyze the chemistry of the moon's soil using a single grain of dust brought back by Apollo 17 astronauts in 1972.

New research sheds light on the ages of lunar ice deposits
The discovery of ice deposits in craters scattered across the Moon's south pole has helped to renew interest in exploring the lunar surface.

Study suggests ice on lunar south pole may have more than 1 source
New research sheds light on the ages of ice deposits reported in the area of the Moon's south pole -- information that could help identify the sources of the deposits and help in planning future human exploration.

Reconstructing the first successful lunar farside landing
A research team, headed by Prof. LI Chunlai from the National Astronomical Observatories of Chinese Academy of Sciences has published a full reconstruction of the Chang'E-4's landing.

NASA's LRO sheds light on lunar water movement
Scientists using an instrument aboard LRO observed water molecules moving around the dayside of the moon.

NASA's Solar Dynamics Observatory catches lunar freeze frame
On March 6, NASA's Solar Dynamics Observatory watched a lunar transit in space -- one in which the satellite's path made the Moon appear to stand still, then backtrack.

First look: Chang'e lunar landing site
On Jan. 30, NASA's Lunar Reconnaissance Orbiter caught views of the Chinese Chang'e 4 lander on the floor of the Moon's Von Kármán crater.

Scientists explain formation of lunar dust clouds
Physicists from the Higher School of Economics and Space Research Institute have identified a mechanism explaining the appearance of two dusty plasma clouds resulting from a meteoroid that impacted the surface of the Moon.

Read More: Lunar Surface News and Lunar Surface Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to