Broken genomes behind breast cancers

December 23, 2009

The first detailed search of breast cancer genomes to uncover genomic rearrangements is published today. The team characterised the ways in which the human genome is broken and put back together in 24 cases of breast cancer.

Rearrangements involve reshuffling and reorganisation of the genome and include deletions, duplications and novel juxtaposition of DNA sequences. The study shows that breast cancer samples can differ greatly in the extent to which they are subject to genomic rearrangements: some are relatively undisturbed whereas others are fractured extensively and then reassembled with more than 200 rearrangements present.

While it is known that the majority of cancer genes important in blood cancers are activated by rearrangement, the role of this process in the common adult cancers is much less clear. This new study builds on pioneering work from the team using next generation sequencing to characterise comprehensively rearrangements in adult solid tumours.

"We have looked at the level of the DNA sequence at just how splintered and reorganised the genome is in many breast cancers. We were, frankly, astounded at the number and complexity of rearrangements in some cancers." says Professor Mike Stratton of the Wellcome Trust Sanger Institute. "Just as important, the genomes were different from each other, with multiple distinctive patterns of rearrangement observed, supporting the view that breast cancer is not one, but several diseases."

The information obtained from this study will add a new dimension to tumour classification and thus refine diagnosis and treatment.

In the study, the team used next-generation DNA sequencing to produce maps of genome rearrangements in 24 breast cancer samples, which were chosen to include the major subtypes of breast cancer and also included examples of breast cancers arising in BRCA1 and BRCA2 breast cancer families.

One breast cancer showed just a single genomic rearrangement - while others showed more than 200. The study provides detailed insights into the ways that the genome in some cancers have broken and also the processes that were used by the cancer cell in gluing the broken bits of genome back together again.

"It looks as though some breast cancers have a defect in the machinery that maintains and repairs DNA and this defect is resulting in large numbers of these abnormalities," says Dr Andy Futreal of the Wellcome Trust Sanger Institute. "At the moment we do not know what the defect is or the abnormal gene underlying it, but we are seeing the result of its malfunction in the hideously untidy state of these genomes. Identifying the underlying mutated cause will be central to working out how some breast cancers develop."

The broad groups of rearrangement were associated with different subtypes of breast cancer: HER2 positive breast cancers - those that are responsive to herceptin - have similar patterns of disruption. By the same measure, triple-negative breast cancers, which don't respond to treatment with herceptin or hormones, looked similar.

The size of the DNA regions that are deleted, duplicated or removed ranges from a few hundred letters of DNA code to several millions. Most changes were rearrangements within the same chromosome, but there were also a substantial number involving the joining of two different chromosomes.

Dissecting out the complexity and the diversity of the breast cancer genomes is important for understanding how the cancers arise. Importantly, however, the apparent loss of DNA repair systems raises the possibility of new therapeutic opportunities in some breast cancers.

"It appears that in different subtypes of breast cancers, distinct mechanisms of DNA repair are impaired, leading to different types of genomic disorganisation," suggests Dr Jorge Reis-Filho, team leader from the Breakthrough Breast Cancer Research Centre at The Institute of Cancer Research.

"If we damage further an already-faulty DNA repair system using tailored therapies, one can kill tumour cells selectively, without harming normal cells. There are already some highly interesting results suggesting that breast cancers with defects in DNA repair are more sensitive to drugs that cause additional DNA damage."
-end-
Notes to Editors

Publication Details
Stephens PJ et al. (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature.

Funding
This work was supported by the Wellcome Trust, the Kay Kendall Leukaemia Fund, Human Frontiers, the Dana-Farber/Harvard SPORE in breast cancer, Breakthrough Breast Cancer, the Research Council of Norway.

Participating Centres Breakthrough Breast Cancer funds ground-breaking research, campaigns for better services and treatments and raises awareness of breast cancer. Through this work the charity believes passionately that breast cancer can be beaten and the fear of the disease removed for good.

Under the directorship of Professor Alan Ashworth FRS, the Breakthrough Research Centre now has 120 world-class scientists and clinicians tackling breast cancer from all angles - from understanding the normal growth and development of the breast, how breast cancer arises and how the cancer spreads, to treatment and ultimately disease prevention. Scientists at the Breakthrough Research Centre have a range of expertise and approaches and together they are working towards a common goal: a future free from the fear of breast cancer.

Find more information at www.breakthrough.org.uk or call free on 08080 100 200.

The Institute of Cancer Research (ICR) For more information visit www.icr.ac.uk

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is the largest charity in the UK. It funds innovative biomedical research, in the UK and internationally, spending over £600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. http://www.wellcome.ac.uk

Contact details
Don Powell Press Officer
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.officer@sanger.ac.uk

Wellcome Trust Sanger Institute

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.