Back to the dead (sea, that is)

December 23, 2010

They'll drill through four ice ages, epic sandstorms, mankind's migration from Africa to the New World, and the biggest droughts in history. Tel Aviv University is heading an international study that for the first time will dig deep beneath the Dead Sea, 500 meters (about a third of a mile) down under 300 meters (about a fifth of a mile) of water. Drilling with a special rig, the researchers will look back in time to collect a massive amount of information about climate change and earthquake patterns.

The study, led by Prof. Zvi Ben-Avraham of Tel Aviv University's Minerva Dead Sea Research Center, "aims to get a complete record in unprecedented resolution -- at one year intervals -- of the last 500 thousand years," says Prof. Ben-Avraham.

A crazy sandstorm 365,250 years ago?

Looking at the core sample to be dug about five miles offshore near Ein Gedi, the researchers hope to pinpoint particular years in Earth history to discover the planet's condition. They'll be able to see what the climate was like 365,250 years ago, for instance, or determine the year of a catastrophic earthquake.

This is by far the largest Earth sciences study of its kind in Israel. The evidence will help the world's climatologists calibrate what they know about climate change from other geological samples -- and may lead to better predictions of what's in store for Middle East weather. For example, are currently increasing dry and hot periods in the region something new, or are they part of some larger cyclical pattern? What they find should also shed light on earthquake patterns -- important information for Israelis, Jordanians and Palestinians who live on or around the fault line that passes through the Dead Sea region.

Slicing through a geological cake

"The sediments provide an 'archive' of the environmental conditions that existed in the area in its geological past," Prof. Ben-Avraham says. While the sample being collected isn't as deep as oil explorers drill to look for oil, the core will be something special: it will be kept in an unbroken piece so that records can be traced more accurately.

The study is being supported by the Israel Sciences Academy and includes dozens of scientists from America, Germany, Switzerland, Norway, Japan, and Israel. Scientists from Jordan and the Palestinian Authority are also cooperating on this unique event. The researchers come from a variety of disciplines, from environmental science to chemistry, and each will get different parts of the core to analyze.

Prof. Ben-Avraham himself is particularly interested in chemical changes to the sediment in the Dead Sea over the last half million years. The study, he adds, will shed light on human migration patterns through the region.

At 423 meters, or a quarter of a mile, below sea level, the Dead Sea is the lowest place on earth. Today it draws millions of tourists from around the world to enjoy its legendarily healing properties.
-end-
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

American Friends of Tel Aviv University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.