Fat cells become useful stem cells in tissue reconstruction

December 23, 2010

Tampa, Fla. (Dec. 23, 2010) - Two studies appearing in the current issue of Cell Transplantation 19(10) discuss stem cells derived from adipose (fat) cells and their potential use in plastic surgery and tissue reconstruction. The studies are now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

Adipose-derived stem cells maintain their "stemness" and could be useful for cell-based therapies A team of researchers from several institutions in Italy isolated and characterized adult fat cell-derived stem cells from patients undergoing lipoaspiration (surgical removal of fat deposits) in order to investigate the ability of the fat cells to maintain their stem cell characteristics in in vitro cultures to the point where once transplanted they could aid in tissue regeneration.

According to the study's corresponding authors Dr. Stefami Bucher of the San Gallicano Institute (Rome) and Dr. Rita Falcioni of the Regina Elena Cancer Institute (Rome), adipose tissues share several biological properties with bone marrow, they can be found in abundance, they can be obtained from patients undergoing noninvasive lipoaspirate procedures, and they have the potential to be useful in a range of therapeutic applications.

"The use of lipoaspirate as filling material is a powerful technique for tissue repair in plastic surgery," said Dr. Falcioni. "Increasingly, it is used in oncology to repair tissue damaged by surgical treatments, such as mastectomy. The use of purified adipose-derived stem cells might improve this surgical procedure by shortening the time to achieve esthetic results and thereby improving patient quality of life."

The researchers described adipose tissues as "highly specialized connective tissues" that help provide the body with an energy source, yet little research has investigated the transplant potential of adipose-derived stem cells.

"We strongly suggest that the adipose-derived stem cells we purified in our study could be applied in the near future for cell therapy using the cell-assisted lipotransfer technique."

Contact: Dr. Rita Falcioni, Regina Elena Cancer Institute, Department of Experimental Oncology, Molecular Oncogenesis Laboratory, Via delle Messi d'Oro, 156, 00158 Rome, Italy Tel:+ 39-06- 52662535; Fax: +39-06-52662505 Email: falcioni@ifo.it

Citation: Folgiero, V.; Migliano, E.; Tedesco, M.; Iacovelli, S.; Bon, G.; Torre, M. L.; Sacchi, A.; Marazzi, M.; Bucher, S.; Falcioni, R. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant. 19(10):1225-1235; 2010.




Plastic surgery meets regenerative medicine

"Progenitor, endothelial and mensenchymal stem cells derived from adipose tissues could be central to plastic and reconstructive surgery applications as well as represent the focus for therapies for a number of disease conditions, including those affecting bone, cartilage, muscle, liver, kidney, cardiac, neural and pancreatic tissue," said Dr. Camillo Ricordi, lead author on a paper by researchers from the University of Miami's Cell Transplant Center and Diabetes Research Institute.

According to Dr. Ricordi and colleagues, successful engraftment and long term survival of transplanted adipose tissue has increased interest in structural fat grafting, yet there is a high percentage (up to 70%) of tissue resorption over time. Adipose cells can also fall victim to trauma during harvesting. In contrast, progenitor cells have minimal metabolic requirements and tend to survive longer.

"Adipose-derived stem cells might very well represent the only tissue surviving transplantation," concluded Dr. Ricordi. "There is much more to be learned in tissue remodeling following adipose tissue transplantation and it is time to carefully re-examine the potential implications of autologous fat grafting as being more than the filler concept for which it was originally utilized."

"These two articles highlight the considerable promise for therapeutic and cosmetic benefit from the relatively new derivation of stem cells from fat cells," said Dr. Paul Sanberg, co-editor-in-chief of the journal Cell Transplantation and executive director of the University of South Florida Center of Excellence for Aging and Brain Repair. "It will be of great interest to see how the clinical use of these cells will develop."

Contact: Dr. Camillo Ricordi, Cell Transplant Center and Diabetes Research Institute, University of Miami, 1450 NW 10th Ave., Miami, FL, USA 33136, Tel:+ 305-243-4404; Fax: 305-243-6913 Email: ricordi@miami.edu

Citation: Tremolada, C.; Palmieri, G.; Ricordi, C. Adipocyte Transplantation and Stem Cells: Plastic Surgery Meets Regenerative Medicine. Cell Transplant. 19(10):1217-1223; 2010.
-end-
The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications, Inc. www.sciencescribe.net

Cell Transplantation Center of Excellence for Aging and Brain Repair

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.