Gene alteration in mice mimics heart-building effect of exercise

December 23, 2010

BOSTON--By tweaking a single gene, scientists have mimicked in sedentary mice the heart-strengthening effects of two weeks of endurance training, according to a report from Dana-Farber Cancer Institute and Beth Israel Deaconess Medical Center (BIDMC).

The genetic manipulation spurred the animals' heart muscle cells -- called cardiomyocytes -- to proliferate and grow larger by an amount comparable to normal mice that swam for up to three hours a day, the authors write in the journal Cell.

This specific gene manipulation can't be done in humans, they say, but the findings may suggest a future strategy for repairing injured hearts through muscle regeneration.

"If we learned to manipulate this pathway with specific exercise regimens or with drugs, we might be able to achieve some of the benefits produced by exercise-related heart enlargement," said Bruce Spiegelman, PhD, of Dana-Farber, the study's co-senior author with Anthony Rosenzweig, MD, of BIDMC. Pontus Bostrom, PhD, MD, a postdoctoral fellow at Dana-Farber, is the first author.

The investigators found that the mildly enlarged hearts of the genetically altered mice proved to be surprisingly resistant to a model of cardiac stress that mimics valvular heart disease or the effects of high blood pressure. Someday this observation might lead to therapeutic measures to treat or prevent heart failure, Spiegelman said.

Only recently have scientists discovered that adult cardiomyocytes retain the potential to begin dividing and spawning new muscle cells. In their new publication, the authors describe for the first time a genetic trigger that responds to physical exercise and turns on a molecular pathway that jump-starts cardiomyocyte growth.

"It's well documented that exercise has beneficial effects on metabolism and skeletal muscle, but we hypothesized that it might also have more direct beneficial effects in the heart itself that could be exploited to protect against heart failure," noted Rosenzweig, a cardiologist at BIDMC.

While most previous studies have investigated diseased hearts, these investigators focused their studies on the changes that occur in hearts after endurance exercise. Heart muscle enlargement, or hypertrophy, in response to exercise is popularly known as "athlete's heart" in humans. This process of benign heart muscle growth, the scientists found, involves a distinctly different series of molecular events from those causing pathological hypertrophy -- the enlarged and damaged heart seen in patients suffering from factors like high blood pressure.

While the molecular networks involved in pathological hypertrophy have been studied extensively, there's been little research on the pathways leading to benign heart enlargement, despite the fact that "exercise protects the heart at so many levels," said Bostroom. "We decided to try and find a gene that could be driving some of the important changes we see in exercise."

First, they had adult mice swim daily for increasing amounts of time, and after 14 days found that their hearts were mildly enlarged as a result. Other mice with restricted blood flow in their aorta also showed enlargement, but of the type associated with heart disease. The researchers then screened both sets of animals against a collection of all known transcription factors -- proteins that turn gene activity up or down -- and compared their expression in the two types of heart enlargement.

The key differences turned out to be in a pair of transcription factors acting in concert. One, C/EPB-beta, had reduced activity in the exercised mice while the other, CITED4, was more active.

So, could turning down C/EPB-beta in normal mice cause their hearts to grow as if they had been working out -- even though they did no extra exercise? The answer was yes: Genetic manipulation to reduce C/EPB-beta expression raised the activity of CITED4, and in those mice, cardiomyocytes began dividing and growing in size until their heart muscles resembled those of the endurance swimmers. The mice also had markedly improved maximal exercise capacity even without exercise training.

Importantly, lowering C/EPB-beta expression also protected mice from developing heart failure as a result of restricted aortic blood flow. It is likely that the more-robust cardiomyocytes played an important role in the resistance to heart failure, said the investigators, but they couldn't rule out that other actions of reduced C/EPB-beta and increased CITED4 also contributed.

The authors concluded that developing greater insight into the pathways affecting C/EPB-beta protein expression, or drugs that suppress C/EPB-beta expression in the heart, could be of significant clinical value. "By understanding the pathways that benefit the heart with exercise, we may be able to exploit those for patients who aren't able to exercise," said Rosenzweig. "If there were a way to modulate the same pathway in a beneficial way, it would open up new avenues for treatment."
-end-
Other authors are from Dana-Farber, BIDMC, and Brigham and Women's Hospital.

Support for the research was provided in part by the Leducq Foundation Network of Research Excellence and the National Institutes of Health.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.harvard.edu.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Dana-Farber Cancer Institute

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.