Texas A&M professor helps develop first high-temp spin-field-effect transistor

December 23, 2010

COLLEGE STATION, Dec. 23, 2010 -- An international team of researchers featuring Texas A&M University physicist Jairo Sinova has announced a breakthrough that gives a new spin to semiconductor nanoelectronics and the world of information technology.

The team has developed an electrically controllable device whose functionality is based on an electron's spin. Their results, the culmination of a 20-year scientific quest involving many international researchers and groups, are published in the current issue of Science.

The team, which also includes researchers from the Hitachi Cambridge Laboratory and the Universities of Cambridge and Nottingham in the United Kingdom as well as the Academy of Sciences and Charles University in the Czech Republic, is the first to combine the spin-helix state and anomalous Hall effect to create a realistic spin-field-effect transistor (FET) operable at high temperatures, complete with an AND-gate logic device -- the first such realization in the type of transistors originally proposed by Purdue University's Supriyo Datta and Biswajit Das in 1989.

"One of the major stumbling blocks was that to manipulate spin, one may also destroy it," Sinova explains. "It has only recently been realized that one could manipulate it without destroying it by choosing a particular set-up for the device and manipulating the material. One also has to detect it without destroying it, which we were able to do by exploiting our findings from our study of the spin Hall effect six years ago. It is the combination of these basic physics research projects that has given rise to the first spin-FET."

Sixty years after the transistor's discovery, its operation is still based on the same physical principles of electrical manipulation and detection of electronic charges in a semiconductor, says Hitachi's Dr. Jorg Wunderlich, senior researcher in the team. He says subsequent technology has focused on down-scaling the device size, succeeding to the point where we are approaching the ultimate limit, shifting the focus to establishing new physical principles of operation to overcome these limits -- specifically, using its elementary magnetic movement, or so-called "spin," as the logic variable instead of the charge.

This new approach constitutes the field of "spintronics," which promises potential advances in low-power electronics, hybrid electronic-magnetic systems and completely new functionalities.

Wunderlich says the 20-year-old theory of electrical manipulation and detection of electron's spin in semiconductors -- the cornerstone of which is the "holy grail" known as the spin transistor -- has proven to be unexpectedly difficult to experimentally realize.

"We used recently discovered quantum-relativistic phenomena for both spin manipulation and detection to realize and confirm all the principal phenomena of the spin transistor concept," Wunderlich explains.

To observe the electrical manipulation and detection of spins, the team made a specially designed planar photo-diode (as opposed to the typically used circularly polarized light source) placed next to the transistor channel. By shining light on the diode, they injected photo-excited electrons, rather than the customary spin-polarized electrons, into the transistor channel. Voltages were applied to input-gate electrodes to control the procession of spins via quantum-relativistic effects. These effects -- attributable to quantum relativity -- are also responsible for the onset of transverse electrical voltages in the device, which represent the output signal, dependent on the local orientation of processing electron spins in the transistor channel.

The new device can have a broad range of applications in spintronics research as an efficient tool for manipulating and detecting spins in semiconductors without disturbing the spin-polarized current or using magnetic elements.

Wunderlich notes the observed output electrical signals remain large at high temperatures and are linearly dependent on the degree of circular polarization of the incident light. The device therefore represents a realization of an electrically controllable solid-state polarimeter which directly converts polarization of light into electric voltage signals. He says future applications may exploit the device to detect the content of chiral molecules in solutions, for example, to measure the blood-sugar levels of patients or the sugar content of wine.

This work forms part of wider spintronics activity within Hitachi worldwide, which expects to develop new functionalities for use in fields as diverse as energy transfer, high-speed secure communications and various forms of sensor.

While Wunderlich acknowledges it is yet to be determined whether or not spin-based devices will become a viable alternative to or complement of their standard electron-charge-based counterparts in current information-processing devices, he says his team's discovery has shifted the focus from the theoretical academic speculation to prototype microelectronic device development.

"For spintronics to revolutionize information technology, one needs a further step of creating a spin amplifier," Sinova says. "For now, the device aspect -- the ability to inject, manipulate and create a logic step with spin alone -- has been achieved, and I am happy that Texas A&M University is a part of that accomplishment."
-end-
To learn more about the team's research, go to http://faculty.physics.tamu.edu/sinova/.

Sinova, (979) 845-4179 or sinova@physics.tamu.edu

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $630 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Shana K. Hutchins, (979) 862-1237 or shutchins@science.tamu.edu or Dr. Jairo

Texas A&M University

Related Spintronics Articles from Brightsurf:

A four-state magnetic tunnel junction for novel spintronics applications
Researchers have introduced a new type of MTJ with four resistance states, and successfully demonstrated switching between the states with spin currents.

Ultrafast electrons in magnetic oxides: A new direction for spintronics?
Special metal oxides could one day replace semiconductor materials that are commonly used today in processors.

Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current.

Magnetic memory states go exponential
Researchers showed that relatively simple structures can support exponential number of magnetic states - much greater than previously thought - and demonstrated switching between the states by generating spin currents.

New breakthrough in 'spintronics' could boost high speed data technology
Scientists have made a pivotal breakthrough in the important, emerging field of spintronics -- which could lead to a new high speed energy efficient data technology.

A path to new nanofluidic devices applying spintronics technology
Japanese scientists have elucidated the mechanism of the hydrodynamic power generation using spin currents in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller.

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates
An Australian has published an extensive review of spin-gapless semiconductors (SGSs), a new class of 'zero bandgap' materials which have fully spin polarised electrons and holes, and first proposed in 2008 by the review team's lead, Professor Xiaolin Wang (University of Wollongong).

Graphene and 2D materials could move electronics beyond 'Moore's Law'
A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the USA has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics.

Toward a more energy-efficient spintronics
In order to generate and detect spin currents, spintronics traditionally uses ferromagnetic materials whose magnetization switching consume high amounts of energy.

Computing with molecules: A big step in molecular spintronics
Chemists and physicists at Kiel University joined forces with colleagues from France, and Switzerland to design, deposit and operate single molecular spin switches on surfaces.

Read More: Spintronics News and Spintronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.