3 new genetic links to colorectal cancer

December 23, 2012

Vanderbilt-Ingram Cancer Center investigators have identified three new genetic "hotspots" linked to colorectal cancer.

These variants, reported Dec. 23 in an Advanced Online Publication in Nature Genetics, provide new insight into the biology of colorectal cancer - and could represent new therapeutic targets for the disease.

Colorectal cancer is one of the most commonly diagnosed cancers worldwide - and rates are particularly high in the United States and other developed countries. Genetics plays an important role in both sporadic and familial (inherited) forms of the disease. However, only about 6 percent of colorectal cancer cases are explained by the rare genetic variants known to confer high risk of colorectal cancer (as seen in familial forms of the disease).

Previous studies on the genetic basis of colorectal cancer have pinpointed several additional variants, but most of the studies were conducted in European/Caucasian populations.

"Looking at different ethnic groups is important because the genetic structures can be different enough that variants identified in one population do not explain risk in other populations," said Wei Zheng, M.D., Ph.D., MPH, an Ingram Professor of Cancer Research and senior author on the study. "Because of the difference in genetic structures and underlying environment exposures, it might be easier to discover some risk variants in studies conducted in non-European populations."

In 2009, Zheng and colleagues in several Asian countries established the "Asia Colorectal Cancer Consortium" to search for novel genetic risk factors for the disease. The consortium included populations in China, Korea and Japan.

Using an approach known as a "genome-wide association study" (or GWAS), Zheng and colleagues began searching for common variants linked to disease risk.

From genomic data obtained from 2,098 colorectal cancer cases and 5,749 controls, the researchers identified 64 variants, or "single nucleotide polymorphisms" (SNPs), that were associated with colorectal cancer.

The investigators then replicated these findings in another set of samples, narrowing down the number of disease-associated variants to four. Three of those four variants were also associated with colorectal cancer risk in a larger European sample.

"The findings from this study are relevant to both Asian and European populations," said Zheng. "Interestingly, these three susceptibility loci were not discovered in previous studies conducted in European-ancestry populations."

This study highlights the importance of conducting genetic studies in non-European populations to fully uncover the genetic basis for common diseases, including colorectal cancer, Zheng noted.

While the specific functions of these newly identified susceptibility loci are not clear yet, several important genes are located in the regions near the risk variants discovered in this study. For example, one risk variant is located near CCND2, the gene encoding cyclin D2, a member of the cyclin family of proteins that regulate the cell cycle. Cyclins have been linked to cancer, but research on the CCND2 gene has been limited. Therefore, the current findings suggest the need for further research on the role of other cyclins and cyclin-dependent kinases in carcinogenesis.

"These new discoveries are very exciting," Zheng said. "They will certainly lead to future studies regarding the biology of these regions and the translational potential of these findings in cancer prevention and treatment."
-end-
The research was supported in part by grants from the National Cancer Institute (CA070878, CA082729, CA124558, CA148667 and CA122364) of the National Institutes of Health.

Zheng is also a professor of Medicine, director of the Vanderbilt Epidemiology Center, and chief of the Division of Epidemiology at Vanderbilt University.

Other Vanderbilt authors on the paper were: Ben Zhang, Ph.D.; Qiuyin Cai, M.D., Ph.D.; Jirong Long, Ph.D.; Jiajun Shi, Ph.D.; Wanqing Wen, M.D., MPH; Gong Yang, M.D., MPH; Ryan Delahanty, Ph.D., and Xiao-Ou Shu, M.D., Ph.D.

This research was conducted in collaboration with investigators from Sun Yat-sen University Cancer Center (China), Aichi Cancer Center Research Institute (Japan), Korean National Cancer Center (South Korea), the Shanghai Cancer Institute (China), Yonsei University (South Korea), Hallym University College of Medicine (South Korea), National Cancer Institute (USA), Kyoto University Center for Genomic Medicine (Japan), and Seoul National University College of Medicine (South Korea).

Vanderbilt University Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.