Motor excitability predicts working memory

December 23, 2013

Humans with a high motor excitability have a better working memory than humans with a low excitability. This was shown in a study conducted by scientists from the Transfacultary Research Platform at the University of Basel. By measuring the motor excitability, conclusions can be drawn as to the general cortical excitability - as well as to cognitive performance.

Working memory allows the temporary storage of information such as memorizing a phone number for a short period of time. Studies in animals have shown that working memory processes among others depend on the excitability of neurons in the prefrontal cortex. Moreover, there is evidence that motor neuronal excitability might be related to the neuronal excitability of other cortical regions. Researchers from the Psychiatric University Clinics (UPK Basel) and the Faculty of Psychology in Basel have now studied if the excitability of the motor cortex correlates with working memory performance- results were positive.

«The motor cortical excitability can be easily studied with transcranial magnetic stimulation», says Nathalie Schicktanz, doctoral student and first author of the study. During this procedure, electromagnetic impulses with increasing intensity are applied over the motor cortex. For subjects with high motor excitability already weak impulses are sufficient to trigger certain muscles - such as those of the hand - to show a visible twitch.

Conclusions for other cortical regions

In the present study, that included 188 healthy young subjects, the scientists were able to show that subjects with a high motor excitability had increased working memory performance as compared to subjects with a low excitability. «By measuring the excitability of the motor cortex, conclusions can be drawn as to the excitability of other cortical areas», says Schicktanz.

«The findings help us to understand the importance of neuronal excitability for cognitive processes in humans», adds Dr. Kyrill Schwegler, co-author of the study. The results might also have important clinical implications, as working memory deficits are a component of many neuropsychiatric disorders, such as schizophrenia or attention deficit hyperactivity disorder. In a next step, the scientists plan to study the relation between neuronal excitability and memory on a molecular level.

The study is part of a project lead by Prof. Dominique de Quervain and Prof. Andreas Papassotiropoulos. The project uses transcranial magnetic stimulation to study the cognitive functions in humans. The goal is to identify the neurobiological and molecular mechanisms of human memory.
Original citation

Nathalie Schicktanz, Kyrill Schwegler, Matthias Fastenrath, Klara Spalek, Annette Milnik, Andreas Papassotiropoulos, Thomas Nyffeler & Dominique J.-F. de Quervain

Motor threshold predicts working memory performance in healthy humans

Annals of Clinical and Translational Neurology, 2013, DOI: 10.1002/acn3.22

University of Basel

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to