Nav: Home

First movie of energy transfer in photosynthesis solves decades-old debate

December 23, 2016

Using ultrafast imaging of moving energy in photosynthesis, scientists have determined the speed of crucial processes for the first time.

This should help scientists understand how nature has perfected the process of photosynthesis, and how this might be copied to produce fuels by artificial photosynthesis.

During photosynthesis, plants harvest light and, though a chemical process involving water and carbon dioxide, convert this into fuel for life.

A vital part of this process is using the light energy to split water into oxygen and hydrogen. This is done by an enzyme called Photosystem II. Light energy is harvested by 'antennae', and transferred to the reaction centre of Photosystem II, which strips electrons from water. This conversion of excitation energy into chemical energy, known as 'charge separation', is the first step in splitting water.

It was previously thought that the process of charge separation in the reaction centre was a 'bottleneck' in photosynthesis - the slowest step in the process - rather than the transfer of energy along the antennae.

Since the structure of Photosystem II was first determined 2001, there was some suggestion that in fact it could be the energy transfer step that was slowest, but it was not yet possible to prove experimentally.

Now, using ultrafast imaging of electronic excitations that uses small crystals of Photosystem II, scientists from Imperial College London and Johannes Kepler University (JKU) in Austria have shown that the slowest step is in fact the process through which the plants harvest light and transfer its energy through the antennae to the reaction centre.

The new insights into the precise mechanics of photosynthesis should help researchers hoping to copy the efficiency of natural photosynthesis to produce green fuels. Study author Dr Jasper van Thor, from the Department of Life Sciences at Imperial, said: "We can now see how nature has optimised the physics of converting light energy to fuel, and can probe this process using our new technique of ultrafast crystal measurements.

"For example, is it important that the bottleneck occurs at this stage, in order to preserve overall efficiency? Can we mimic it or tune it to make artificial photosynthesis more efficient? These questions, and many others, can now be explored."

Co-author Dr Thomas Renger from the Department of Theoretical Biophysics at JKU added: "When we predicted the present model of energy transfer eight years ago, this prediction was based on a structure-based calculation. Since such calculations are far from trivial for a system as complex as this, some doubts remained. The technique invented by Jasper's group at Imperial has allowed us to remove these doubts and has fully confirmed our predictions."

Although the researchers could determine which step is faster, both steps occur incredibly quickly - the whole process takes a matter of nanoseconds (billionths of a second), with the individual steps of energy transfer and charge separation taking only picoseconds (trillionths of a second).

The team used a sophisticated system of lasers to cause reactions in crystals of Photosystem II, and then to measure in space and time the movement of excitations of electrons - and hence the transfer of energy - across the antennae and reaction centre.

The resulting movie of the movement of excited electrons across minute sections of the system revealed where energy is held and when it is passed along. This proved that the initial step of separating charges for the water-splitting reaction takes place relatively quickly, but that the light harvesting and transfer process is slower.

Dr van Thor added: "There had been clues that the earlier models of the bottleneck of photosynthesis were incorrect, but until now we had no direct experimental proof. We can now show that what I was lectured as an undergraduate in the 1990s is no longer supported."

Imperial College London

Related Photosynthesis Articles:

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.
Photosynthesis in a droplet
Researchers develop an artificial chloroplast.
Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.
Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.
Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
More Photosynthesis News and Photosynthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at