Nav: Home

A wolverine inspired material

December 23, 2016

View the video showcasing the self-healing material in action: https://www.youtube.com/watch?v=V4qCxOB3EVI

RIVERSIDE, Calif.-- Scientists, including several from the University of California, Riverside, have developed a transparent, self-healing, highly stretchable conductive material that can be electrically activated to power artificial muscles and could be used to improve batteries, electronic devices, and robots.

The findings, which were published today in the journal Advanced Materials, represent the first time scientists have created an ionic conductor, meaning materials that ions can flow through, that is transparent, mechanically stretchable, and self-healing.

The material has potential applications in a wide range of fields. It could give robots the ability to self-heal after mechanical failure; extend the lifetime of lithium ion batteries used in electronics and electric cars; and improve biosensors used in the medical field and environmental monitoring.

"Creating a material with all these properties has been a puzzle for years," said Chao Wang, an adjunct assistant professor of chemistry who is one of the authors of the paper. "We did that and now are just beginning to explore the applications."

This project brings together the research areas of self-healing materials and ionic conductors.

Inspired by wound healing in nature, self-healing materials repair damage caused by wear and extend the lifetime, and lower the cost, of materials and devices. Wang developed an interest in self-healing materials because of his lifelong love of Wolverine, the comic book character who has the ability to self-heal.

Ionic conductors are a class of materials with key roles in energy storage, solar energy conversion, sensors, and electronic devices.

Another author of the paper, Christoph Keplinger, an assistant professor at the University of Colorado, Boulder, previously demonstrated that stretchable, transparent, ionic conductors can be used to power artificial muscles and to create transparent loudspeakers - devices that feature several of the key properties of the new material (transparency, high stretchability and ionic conductivity) - but none of these devices additionally had the ability to self-heal from mechanical damage.

The key difficulty is the identification of bonds that are stable and reversible under electrochemical conditions. Conventionally, self-healing polymers make use of non-covalent bonds, which creates a problem because those bonds are affected by electrochemical reactions that degrade the performance of the materials.

Wang helped solve that problem by using a mechanism called ion-dipole interactions, which are forces between charged ions and polar molecules that are highly stabile under electrochemical conditions. He combined a polar, stretchable polymer with a mobile, high-ionic-strength salt to create the material with the properties the researchers were seeking.

The low-cost, easy to produce soft rubber-like material can stretch 50 times its original length. After being cut, it can completely re-attach, or heal, in 24 hours at room temperature. In fact, after only five minutes of healing the material can be stretched two times its original length.

Timothy Morrissey and Eric Acome, two graduate students working with Keplinger, demonstrated that the material could be used to power a so-called artificial muscle, also called dielectric elastomer actuator. Artificial muscle is a generic term used for materials or devices that can reversibly contract, expand, or rotate due to an external stimulus such as voltage, current, pressure or temperature.

The dielectric elastomer actuator is actually three individual pieces of polymer that are stacked together. The top and bottom layers are the new material developed at UC Riverside, which is able to conduct electricity and is self-healable, and the middle layer is a transparent, non-conductive rubber-like membrane.

The researchers used electrical signals to get the artificial muscle to move. So, just like how a human muscle (such as a bicep) moves when the brain sends a signal to the arm, the artificial muscle also reacts when it receives a signal. Most importantly, the researchers were able to demonstrate that the ability of the new material to self-heal can be used to mimic a preeminent survival feature of nature: wound-healing. After parts of the artificial muscle were cut into two separate pieces, the material healed without relying on external stimuli, and the artificial muscle returned to the same level of performance as before being cut.
-end-
The paper is called "A transparent, self-healing, highly stretchable ionic conductor." In addition to Wang,, Keplinger, Morrissey and Acome, the authors are: Yue Cao, a post-doctoral researcher working with Wang; Bryan Wong, an assistant professor in the Department of Chemical and Environmental Engineering at UC Riverside; and Sarah Allec, a graduate student working with Wong.

University of California - Riverside

Related Artificial Muscle Articles:

Artificial photosynthesis steps into the light
Rice University leads a project to create an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for advanced solar cells.
Artificial synapse for neural networks
A new organic artificial synapse made by Stanford researchers could support computers that better recreate the way the human brain processes information.
Development of a hydraulic drive high-power artificial muscle
As part of the Impulsing PAradigm Change through disruptive Technologies Program (ImPACT) Tough Robotics Challenge (Program Manager: Satoshi Tadokoro), which is an initiative of the Cabinet Office Council for Science, Technology and Innovation, the research team including Professor Koichi Suzumori from the Tokyo Institute of Technology and Dr.
Artificial intelligence to predict odors
FAU chemists are developing an artificial intelligence application which can predict which molecule structures will produce or suppress specific odors.
Artificial beta cells
ETH researchers have used the simplest approach yet to produce artificial beta cells from human kidney cells.
Artificial muscles show more flex
In the cover article appearing this week in Applied Physics Letters, researchers at Louisiana State University discuss how they have developed a new fiber that offers higher tensile stroke and is triggered -- or actuated -- at temperatures more than 100 degrees Celsius cooler than its predecessors.
'Artificial atom' created in graphene
When they are confined to a small space, the behavior of electrons can only be explained by quantum physics.
Researchers have developed a new class of artificial proteins
In the journal, Nature Communications, a team of Danish researchers reports that they have developed a new class of artificial proteins.
Artificial muscle for soft robotics: Low voltage, high hopes
Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a dielectric elastomer with a broad range of motion that requires relatively low voltage and no rigid components.
Why artificial sweeteners can increase appetite
Sydney researchers have revealed for the first time how artificial sweeteners can stimulate appetite in the brain.

Related Artificial Muscle Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".