'Mad cow' mechanism may be integral to storing memory

December 24, 2003

CAMBRIDGE, Mass. (Dec. 24, 2003) - Scientists have discovered a new process for how memories might be stored, a finding that could help explain one of the least-understood activities of the brain. What's more, the key player in this process is a protein that acts just like a prion - a class of proteins that includes the deadly agents involved in neurodegenerative conditions such as mad cow disease.

The study, published as two papers in the Dec. 26 issue of the journal Cell, suggests that this protein does its good work while in a prion state, contradicting a widely held belief that a protein that has prion activity is toxic or at least doesn't function properly.

"For a while we've known quite a bit about how memory works, but we've had no clear concept of what the key storage device is," says Whitehead Institute for Biomedical Research Director Susan Lindquist, who coauthored the study with neurobiologist Eric Kandel at Columbia University. "This study suggests what the storage device might be - but it's such a surprising suggestion to find that a prion-like activity may be involved."

Central to a protein's function is its shape, and most proteins maintain only one shape throughout their lifetime. Prions, on the other hand, are proteins that can suddenly alter their shape, or misfold. But more than just misfolding themselves, they influence other proteins of the same type to do the same. In all known cases, the proteins in these misfolded clusters cease their normal function and either die or are deadly to the cell - and ultimately to the organism.

For this reason, Kausik Si, a postdoc in Kandel's lab, was surprised to find that a protein related to maintaining long-term memory contained certain distinct prion signatures. The protein, CPEB, resides in central-nervous-system synapses, the junctions that connect neurons in the brain. Memories are contained within that intricate network of approximately 1 trillion neurons and their synapses. With experience and learning, new junctions form and others are strengthened. CPEB synthesizes proteins that strengthen such synapses as memories are formed, enabling the synapses to retain those memories over long periods.

For the study, the team extracted the CPEB protein from a sea slug. This lowly creature has achieved high status in neurobiology because its neurons are so big, they can be manipulated and turned into unusually powerful investigative tools. The researchers fused this CPEB to other proteins that would serve as reporters of activity, and then observed its behavior in a variety of yeast models. The researchers discovered that CPEB altered its form and caused other proteins to follow - functioning exactly like a prion. A second unexpected finding was that CPEB carried out its normal function - protein synthesis - when it was in its prion state.

"This is remarkable not just because the protein executes a positive function in its prion-like state," says Lindquist. "It also indicates that prions aren't just oddballs of nature but might participate in fundamental processes."

The finding contradicts the notion that converting to a prion state is a bad thing, says Kandel. "We show instead that the normal state of CPEB may be the less active state, and the prion state may be the effective way of utilizing the normal function of the protein."

The work suggests it's possible that in mammalian neuronal synapses, CPEB's prion properties may be the mechanism that enables the synapses and nerve cells to store long-term memory, a theory the researchers plan to investigate next. Theoretically at least, prions are perfect for this, says Lindquist. Prions could shift into this state quickly without the energy-intensive cellular mechanics that fuel most protein synthesis. The prion state is very stable and can maintain itself for months, even years.

But, "We still need to demonstrate that this prion mechanism operates not just in yeast but in neuron cells," says Kandel.

Lindquist believes that these findings will not be the last time prions are discovered to have normal biological roles. In fact, she has long speculated that researchers will discover them to be essential to many cellular functions. Kandel adds that he wouldn't be surprised if this sort of prion mechanism was discovered in areas such as cancer maintenance and even organ development.
-end-


Whitehead Institute for Biomedical Research

Related Memories Articles from Brightsurf:

Can sleep protect us from forgetting old memories?
Researchers at University of California San Diego School of Medicine report that sleep may help people to learn continuously through their lifetime by encoding new memories and protecting old ones.

Why are memories attached to emotions so strong?
Multiple neurons in the brain must fire in synchrony to create persistent memories tied to intense emotions, new research from Columbia neuroscientists has found.

False memories of crime appear real when retold to others
People are no better than chance at identifying when someone else is recounting a false or real memory of a crime, according to a new UCL study published in Frontiers in Psychology.

Can traumatic memories be erased?
Tokyo, Japan - Scientists from Tokyo Metropolitan University have discovered that Drosophila flies lose long-term memory (LTM) of a traumatic event when kept in the dark, the first confirmation of environmental light playing a role in LTM maintenance.

The way of making memories
How does the brain translate information from the outside world into something we remember?

A new discovery: How our memories stabilize while we sleep
Scientists at the Center for Interdisciplinary Research in Biology (CNRS/Coll├Ęge de France/INSERM) have shown that delta waves emitted while we sleep are not generalized periods of silence during which the cortex rests, as has been described for decades in the scientific literature.

How memories form and fade
Caltech researchers identify the neural processes that make some memories fade rapidly while other memories persist over time.

Firework memories
Recently Weizmann Institute scientists succeeded in recording these rapid bursts of activity -- called 'hippocampal ripples' -- in the human brain, and they were able to demonstrate their importance as a neuronal mechanism underlying the engraving of new memories and their subsequent recall.

Your nose knows when it comes to stronger memories
Memories are stronger when the original experiences are accompanied by unpleasant odors, a team of researchers has found.

Proof it's possible to enhance or suppress memories
Boston University neuroscientist Steve Ramirez and collaborators have published a new paper showing memories are pliable if you know which regions of the brain's hippocampus to stimulate, which could someday enable personalized treatment for people with PTSD, depression and anxiety.

Read More: Memories News and Memories Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.