Seeing without looking

December 24, 2009

LA JOLLA, CA--Like a spotlight that illuminates an otherwise dark scene, attention brings to mind specific details of our environment while shutting others out. A new study by researchers at the Salk Institute for Biological Studies shows that the superior colliculus, a brain structure that primarily had been known for its role in the control of eye and head movements, is crucial for moving the mind's spotlight.

Their findings, published in the Dec. 20, 2009, issue of the journal Nature Neuroscience, add new insight to our understanding of how attention is controlled by the brain. The results are closely related to a neurological disorder known as the neglect syndrome, and they may also shed light on the origins of other disorders associated with chronic attention problems, such as autism or attention deficit disorder.

"Our ability to survive in the world depends critically on our ability to respond to relevant pieces of information and ignore others," explains graduate student and first author Lee Lovejoy, who conducted the study together with Richard Krauzlis, Ph.D., an associate professor in the Salk's Systems Neurobiology Laboratory. "Our work shows that the superior colliculus is involved in the selection of things we will respond to, either by looking at them or by thinking about them."

As we focus on specific details in our environment, we usually shift our gaze along with our attention. "We often look directly at attended objects and the superior colliculus is a major component of the motor circuits that control how we orient our eyes and head toward something seen or heard," says Krauzlis.

But humans and other primates are particularly adept at looking at one thing while paying attention to another. As social beings, they very often have to process visual information without looking directly at each other, which could be interpreted as a threat. This requires the ability to attend covertly.

It had been known that the superior colliculus plays a role in deciding how to orient the eyes and head to interesting objects in the environment. But it was not clear whether it also had a say in covert attention.

In their current study, the Salk researchers specifically asked whether the superior colliculus is necessary for covert attention. To tease out the superior colliculus' role in covert attention, they designed a motion discrimination task that distinguished between control of gaze and control of attention.

The superior colliculus contains a topographic map of the visual space around us, just as conventional maps mirror geographical areas. Lovejoy and Krauzlis exploited this property to temporarily inactivate the part of the superior colliculus corresponding to the location of the cued stimulus on the computer screen. No longer aware of the relevant information right in front of them the subjects instead based all of their decision about the stimulus' movement on irrelevant information found elsewhere on the screen.

"The result is very similar to what happens in patients with neglect syndrome," explains Lovejoy, who is also a student in the Medical Scientist Training Program at UC San Diego. "Up to a half of acute right-hemisphere stroke patients demonstrate signs of spatial neglect, failing to be aware of objects or people to their left in extra-personal space."

"Our results show that deciding what to attend to and what to ignore is not just accomplished with the neocortex and thalamus, but also depends on phylogenetically older structures in the brainstem," says Krauzlis. "Understanding how these newer and older parts of the circuit interact may be crucial for understanding what goes wrong in disorders of attention."
-end-
The work was funded in part by the Simons Foundation, the Institute for Neural Computation and an Aginsky Scholar Award.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Salk Institute

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.