Structural mechanism of the E. coli drug efflux pump AcrB

December 25, 2006

In a new study published online in the open access journal PLoS Biology, Gaby Sennhauser, Marcus Gruetter, and colleagues use structural biology techniques to probe the molecular mechanisms of the major drug efflux pump in E. coli AcrB.

Bacterial resistance to antibiotics is a major challenge for the current treatment of infectious diseases. One way bacteria can escape destruction is by pumping out administered drugs through specific transporter proteins that span the cell membrane, such as AcrB.

Making use of designer proteins that bind to and stabilize proteins of interest, the researchers were able to obtain better resolution structural data for the AcrB complex. After selecting for designed ankyrin repeat proteins (DARPins) that inhibit this pump, Sennhauser and colleagues solved the crystal structure of the DARPin inhibitor in complex with AcrB. They were able to confirm that the AcrB pump is split into three subunits, each of which exhibit distinctly different conformations.

Each subunit has a differently shaped substrate transport channel; these variable channels provide unique snapshots of the different phases employed by AcrB during transport of a substrate. The structure also offers an explanation for how substrate export is structurally coupled to simultaneous proton import--thus significantly improving our understanding of the mechanism of AcrB. This is the first report of the selection and co-crystallization of a DARPin with a membrane protein, which demonstrates not only DARPins' potential as inhibitors, but also as tools for the structural investigation of integral membrane proteins.
-end-
Citation: Sennhauser G, Amstutz P, Briand C, Storchenegger O, Gruetter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5(1): e7. doi:10.1371/journal.pbio.0050007.

CONTACT:

Markus Gruetter
University of Zurich
Winterthurerstrasse 190
Zürich, 8057
Switzerland
+41-44-635-55-80
gruetter@bioc.unizh.ch

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available--to read, download, redistribute, include in databases, and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Crystal Structure Articles from Brightsurf:

Getting single-crystal diamond ready for electronics
Researchers from Osaka University and collaborating partners polished single-crystal diamond to near-atomic smoothness without damaging it.

Crystal structure of SARS-CoV-2 papain-like protease
The pandemic of coronavirus disease 2019 (COVID-19) is changing the world like never before.

Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites
Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites.

Photonic crystal light converter
Spectroscopy is the use of light to analyze physical objects and biological samples.

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution
Solar energy researchers are shining their scientific spotlight on materials with a crystal structure discovered nearly two centuries ago.

Crystal wars
Scientists at The University of Tokyo and Fudan University researched the process of crystallization in which competing structural forms coexist.

Melting a crystal topologically
Physicists at EPFL have successfully melted a very thin crystal of magnetic quasi-particles controllably, as turning ice into water.

The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.

Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.

Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.

Read More: Crystal Structure News and Crystal Structure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.